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OPTIMAL AND ROBUST MEMORYLESS DISCRIMINATION

FROM DEPENDENT OBSERVATIONS

CHAPTER 1

INTRODUCTION

In this thesis we will consider various special cases of the binary hypothesis testing

problem, which may be informally described as follows: One observes some random event

and wishes to decide on the basis of the observation between two hypotheses which

concern the nature of the random event. In all cases that we will consider, the random

event is modeled by a discrete-time random process {X,} and the two hypotheses concern

the probability distribution of the process. More specifically, we consider the following

two hyi,-theses:

H0 : {X,!},= has a density j n)(x)
(1.1)

H1 : {X,}'I has a density / "(x)

where x denotes the n-tuple (i,... , zn). A decision rule for this hypothesis testing

problem is a measurable mapping d which maps the observation space Rn into the set

{0, 1}, the ;nterpretation being that if x is observed and d(x) = i, then one decides that

Hi is true. Such a mapping may also be referred to in this thesis as a test, a receiver,

or a discriminator, If f'") is absolutely continuous with respect to f0 in the sense

that An) (x) = 0 n) X)x = 0, then the optimal decision rule for the Bayesian or

. .a. wrip appro.ed Sepm ber 16, !9MS1



Neyman-Pearson criterion [81 is given by the likelihood ratio test (LRT):

d(x)= 1 iff fnl(x) >

where x is the observed vector, and the choice of the threshold 17 depends more specifically

on the particular criterion and the details of the problem. If the observed random process

is independent and identically distributed (lid) under either hypothesis, then only the

marginal densities are involved, and the LRT becomes

" fixz,)
d(x) = 1 ifr n >

where fo is the marginal density under hO and f is the marginal density under HI.

Taking logarithms on each side, we may also write this in the form

d(X)=1 iff log Li > log1 . (1.2)
~'fo(xi) -

Because of the simple form of the LRT given by (1.2), this result has proven to

be extremely useful in a practical sense whenever the processes can be assumed to be

lid. However, if at least one of the processes is assumed to be dependent, the LRT might

be of little practical value. Consider two such situations. First, it may be the case that

one of the n-dimensional densities involved lacks a closed form expression, so that the

LRT also lacks a closed form expression. Such is-the generally the case for the Rayleigh

distribution in Appendix A. In this situation the LRT is not implementable. Second, one

may wish to implement a test -,hich does not require an assumption on the particular

form of the n-dimensional densities, such as is required for the LRT. For example, if one

wants to design a test based on experimental data, then it is desirable to base such a test

on the empirical marginal densities and possibly some of the lower order moments, since
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the amount of data necessary to establish the n-dimensional empirical densities might be

rather unmanageable. Since the LRT requires explicit knowledge of the n-dimensional

densities, it is clear that the LRT is inappropriate in this case.

In the event that one chooses not to use an LRT, he may proceed by specifying a

test structure and then attempt to determine the optimal test out the class of all tests

which have that structure. A test structure which has appeared often in the literature

is the following:

d(x) =1 iff Tn(x) E A (1.3)

where

T.(x) = E ~z) (1.4)
i=1

Here 0 is a Borel measurable function which will often be referred to as a nonlinearity,

and A is a Borel subset of the real line which will be called the critical region. The test

statistic T, has been referred to in the literature as a zero-memory nonlinearity (ZNL).

Note that in the case where the process is ild under either hypothesis, the log-LRT

(1.2) has this form with tk(z) = log[f 1(z)/fo(z)] and A = [log ioo). Conversely, if the

process is not iid under at least one of the hypotheses, then the LRT will involve memory,

and consequently a memoryless decision rule will be suboptimal. Nevertheless, there are

some advantages to using a memoryless decision rule, particularly when simplicity of

implementation is important. In this thesis we consider in detail the use of various

memoryless decision rules of the form (1.3) as a.-lied to the discrimination problem

(1.1) with the assmuption that the process is stationary under either hypothesis.

In order to implement a test of the form (1.3), one must specify the nonlinearity

0 and the critical region A. Most often, A will be an interval, such as the interval

3



[?,oo) which involves a single threshold -f. In this case, one would probably proceed by

specifying to first and then choosing the value of the threshold -f through simulation or

actual testing to adjust the error probabilities to their desired values. Before determining

the nonlinearity 0, however, one must decide on a performance criterion. Then 10 will

be chosen to be optimal with respect to this criterion. Although the most natural

and useful criterion is that of the error probabilities, for a test of the form (1.3) one

cannot in most cases obtain a dosed form expression for the error probabilities, and thus

another performance measure may be more useful. Such is the case for the results of this

thesis, where we consider performance measures which involve the mean and asymptotic

variance of the test statistic T, under the two hypotheses. For stationary processes, the

mean of T. under Hi is given by

EI T,(X) = E, ,(Xj) = nE, ,(X 1 ) (1.5)
ji

and the variance under Hi is

Vari T,(X) = E, T,(X)2 - [E, T(X)]2

= E, F, * (Xj,)O(Xk)- n2 (E, *(XI)]'
j-i k=i

n n-I n (1.6)

= Var, t#(XY) + 2 Covi [?k(Xi), *(Xk)]
j=1 j=i k=j+l

n-1 n

--nVar, O(X 1 ) + 2 E  E Covi [O(XI), O(Xk-j+l)].
j=l k=j+l

In our notation, Ei, Vari, and Covi denote, respectively, the expecation, variance, and

covariance operations under hypothesis Hi. We now define two functionals /i( O) and

a;'i) which will appear in the work which follows. Define

pi(O) = Ei ¢(X1 ) (1.7)
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and in cases where the sum exists, define

00

u?(,b) = Var, O(X,) + 2 E Coy, [M(X,), O(xj+ 1)]. (1.8)

Thus we have E T,- n~i, and we note also that if the sum in (1.8) converges, then

-1Var T. (X) - na?(4)I -- 0 as n -- oo so that Var, Tn(X)= no? (0) for large values of
n

n. Thus nac is the asymptotic variance of T, unaer hypothesis Hi. These functionals, or

"moments," of the nonlinearity T have rather nice expressions in terms of the marginal

and joint densities of the processes, and by considering performance measures involving

these moments as opposed to the error probabilities, we shall find that the analysis

becomes much more manageable. Note also that for such performance measures, the

n-dimensional densities are not involved for n > 2.

In the chapters that follow, the performance measures which are derived are based

on central limit theory; therefore it will be necessary to restrict the class of processes

-which will be considered. In particular, we desire that the processes involved demonstrate

some kind of asymptotic independence so that central limit theory may be applied. The

type of asymptotic independence which is appropriate for the work here is that which

is defined by various mixing conditions. Let 7.6 denote the a-field of events generated

by {Xi,a < i < b}. Then the process {Xi} is said to be strong mixing if there exists a

sequence {e,,} such that ,n - 0 and

IP(A nB) - P(A)P(B)I <c, (1.9)

for any events A E '- 0 , B E .T +n. If it is also true that

IP(A n B) - P(A)P(B)j _ OnP(B) (1.10)



for some sequence {.} with 0,, - 0, then the process is called 0-mixing. The (-mixing

condition dearly implies the strong mixing condition. Finally, define the process { X} to

be m-dependent if for every integer k we have that F.o and -k'+,,+, are independent.

Note that m-dependence is a special case of 0-mixing with 0', = 0 for n > m. We

include m-dependence because it is easier to work with analytically and because in

certain situations it can approximate the 0-mixing condition well if m is sufficiently large.

Because mixing conditions are defined in terms of the underlying a-fields of events, the

conditions are preserved by memoryless transformations, so that {g(Xj)} will satisfy the

same mixing condition as {Xi}, provided g is measurable. Central limit theorems have

been proved for strong mixing and 0-mixing processes, and one such theorem is given

here as Theorem 1.

Theorem 1. Let {Xi} be a stationary 46-mixing process with -=t n1 < oo and

let O be a measurable real-valued function such that Eb(X1 )l < oc and EO(X 1 )2 < oo.

Then the series in (1.8) converges absolutely and [Tn(X) -n/4(*)]/V/n_) converges in

distribution to a standard normal random variable (having zero mean and unit variance),

provided a 2(0) > 0.

For a proof, see [21 and [4]. In Chapters 2 and 3, we shall assume the m-dependent or

O-mixing condition and make reference to Theorem 1. In Chapter 4 we shall assume

the strong mixing condition and shall also state there a central limit theorem for strong

mixing processes.

A performance measure which has received a lot of attention in the literature

is that of the efficacy of a test, which is based on the concept of asymptotic relative
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efficiency (ARE). In order to defire the efficacy of a test, consider the following problem:

Ho: X = N
(1.11)

HI: Xi=N+O

where the process {N} is a stationary process which represents a noise process. Thus

under HO we observe strictly noise while under H1 we observe a constant signal 7 plus

noise. Let f(7) denote the n dimensional density of the noise process. Note that this

situation is a special case of the problem '1.1) with Jn)(x) = fN)(x) and f)(x) =

)(x - 0). If we consider a test involving the test btatistic , then for a given signal

strength 8 and fixed error probabilities a, # under H0 and HI, respectively, a minimum

sample size ni is required. Under similar conditions but with a different test statistic

T2) a sample size n2 is required. The ARE of T( 2) with respect to TM1 ) may now be

defined as the limit of the ratio nl/n 2 as 0 -. 0 and a and 3 remain fixed. The efficacy

of TM1 ) is defined to be

Th = Lim [-LETMJ8=0 (1.12)
n-oo nVaroT(M)

if the limit exists. Here the subscripts for the expectation and variance operators denote

the value of 9 under which the operations are performed; e.g. Var0 denotes the variance

under Ho. The importance of the efficacy stems from the Pitman-Noether theorem,

which states that if certain conditions are satisfied individually by TM1 ) and T (2), then

the ARE of T(2) with respect to T 1) is equal to the ratio n2/77 of the two efficacies. Hence

TM may be considered a better test than T 2 ) under the ARE criterion if ?h > q2. The

conditions on T 1) which are necessary for the Pitman-Noether theorem are as follows:

(i) 0EeT(1)II=o > 0

(ii) r, > 0

• -= =mmm • l~l• m ll Ill 7



(ii)=. = lim Vars.T(1) = 1 where 0, = K/V/'n for some constant,n-oo [-,E9T()jI2  ,-o Var0TM1

K.

(iv) [T( ) -E~eTn()] / Var' ) converges in distribution to a standard normal random

variable as n - oo for all e E (0,6).

Similar conditions are required of 7(2) . The condition (iv) requires that the test statistic

T(I) be asymptotically normal. In cases where the noise process is iid, it is straight-

forward to apply a central limit theorem to show that the condition (iv) holds for the

test statistic in (1.4), and Miller and Thomas [11] have derived the nonlinearity ip which

maximizes the efficacy in such a situation. They also generalize to the case of a noncon-

stant signal involving the test statistic T,(x) = E ii(xi) for which the nonlinearity

varies with time. In Poor and Thomas [1], the optimal nonlinearity is derived, still with

respect to the efficacy performance measure, for the case where the noise process is m-

dependent. Halverson and Wise [21 show how to correctly extend this result to the more

general case of 0-mixing noise. In either of these latter two cases, Theorem 1 is required

in order to demonstrate that the test statistic is asymptotically normal.

In this thesis we shall not confine ourselves to the weak signal in noise problem, but

we shall consider the more general problem of discrimination (1.1), with the assumption

that the observed process is stationary and satisfies a mixing condition under either

hypothesis. For this type of problem the efficacy performance measure is no longer

appropriate. We shall therefore derive the appropriate performance measures. These

performance measures, which are derived under different problem formulations, are all

of the form

((1.13)

Ra8alII



where the denominator is the square of some "norm" of the vector (ao, 01I), and where Ai

and oi are defined by (1.7) and (1.8). Thus these performance measures are functionals

of the nonlinearities. In Chapter 2 we consider the problem (1.1) under a Neyman-

Pearson formulation. Thus if Pi denotes the probability of error when Hi is true, then

the formulation considered here is to minimize P subject to the constraint that P0 < a.

For this situation, it will be shown that the optimal receiver for large sample sizes (that

is, in an asymptotic sense) is such that it maximizes the performance measure

S, = ) (1.14)

For the reverse situation where P0 is minimized subject to P :5 a, the performance

measure is

SO = -A ) (1.15)

In each of these two performance measures, the "norm" in the denominator is II(ao, 0, )1 =

ai, which, technically speaking, is a pseudo-norm, since I(ao, a1 )II = 0 does not necessar-

ily imply that (ao, a,) = (0,0). Observe the similarity of the performance measure S1 to

the efficacy measure (1.12). This similarity arises from the fact that both performance

measures are aymptotic performance measures based on central limit theory. For the

efficacy, however, the assumptions (i)-(iv) are necessary, whereas fewer assumptions are

necessary to justify the use of S1. Also in Chapter 2, the nonlinearity which maximizes

the performance measure c. is shown to satisfy a Fredholm integral equation of the sec-

ond kind. It is also shown how the integral equation can be solved using Hilbert-Schmidt

theory. In Chapter 3, we consider again the problem (1.1), this time under a minimax

formulation; that is, we desire to minimize the maximum of Po and P1 . It will be shown

9



that the optimum test statistic is one which maximizes the performance measure

52 = (JAI - AO)'(0'0 + a&)2 *li

The nonlinearity which is optimal for this performance measure is shown to satisfy a

nonlinear integral equation for which a closed form solution cannot be given; however,

it is shown how the solution can be obtained numerically using an iterative procedure.

By modifying the minimax formulation slightly, it is shown that one can also derive the

performance measure
3 - 2

010 + , (1.17)

which has the Euclidean norm in the denominator. It will be shown that the maximiza-

tion of S3 leads to a linear integral equation. In Chapter 4, the issue of robustness is

addressed. The approach is that of game theory, or minimax theory, where one tries to

design the optimal receiver to match the worst case densities chosen out of uncertainty

classes. Results are given here for the performance measures Si (and consequently So

as well) and S3. In Chapter 5, the theory is applied to the problem of discrimination

between a Rayleigh density and a lognormal density, where strong correlation is present.

The nonlinearity which maximizes each of the performance measures is computed nu-

merically, and the performance results from computer simulations are presented. The

simulation results are compared to the results for the receiver which is designed under

the assumption that the processes are fid. Chapter 5 also contains a discussion of the

results of the thesis.

10



CHAPTER 2

THE NEYMAN-PEARSON FORMULATION

2.1 The performance measure S1

In this chapter, we consider in detail the hypothesis testing problem (1.1) under

a Neyman-Pearson formulation. Our informal statement of the problem is the following:

minimize P, (2.1)

subject to P0 :5 a

where Pi denotes the probability of error when Hi is true. The reason that the statement

of the problem (2.1) is informal is because it depends implicitly on the sample size n,

and although we are interested in tests with a fixed sample size, we do not wish to

specify n before we consider the problem (2.1). When we speak of a test or decision rule,

we shall actually mean a family of decision rules-one for each n-and in comparing

different tests, we shall not explicitly mention a particular valu- of n. Since for any

reasonable test P, -'* 0 as n --* oo, we may state our problem more accurately in this

way: considering all level a tests (i.e. P0 -< a for all n), find the test for which the rate

of convergence of P to 0 is fastest. We can see now that if for some test d(l) the rate of

11



convergence is faster than the rate for another test P), then there is an integer N such

that P 1) is better than d 2) in the sense implied by (2.1) whenever the sample size n is

greater than N. In this section we shall derive a performance measure S, which specifies

(approximately) the rate at which P converges to 0, and the connection between this

performance measure and the Neyman-Pearson problem (2.1) should be clear.

We will restrict our attention to only those decision rules of the form (1.3) with the

assumption that the test statistic Tn is asymptotically normal under either hypothesis.

Thus under hypothesis Hi we assume that there exist constants Ai and ai > 0 such

that (Tn - nui)/ v/i; converges in distribution to a standard normal random variable

as n --* oo. In the case that the test statistic has the form (1.4) and the conditions of

Theorem 1 are satisfied, the constants ju, and a? are given by (1.7) and (1.8), respectively.

With this assumption, then, for large values of n the distribution of the test statistic

is approximately normal with mean n ii and variance na2 when Hi is true. Taking

a heuristic approach, one can use this knowledge to choose the critical region A by

considering the decision rule (1.3) to be equivalent to an LRT between two Gaussian

densities. In our case, the two Gaussian densities are

1 { -0___=_

(2.2)
1 (t - nA )'

Sexp 2

and the log-LRT is given by

d(x) = 1 if log -'(T') J n77,

or equivalently,

12



d(x) 1 iff

T,2 - ( T,+n2 - (2.3)

where y = 27-(2/n)log(ao/al). We can assume without loss of generality that Ao <II:

the case of /1 = lo is unlikely to occur in practice and will not be considered, and the

case of ju < po follows the same procedure with the appropriate sign change. Assume

first that a02 = a2. If this is true, the expression on the left side of (2.3) is a linear function

of T, and it is easy to see that the log-LRT has the form (1.3) with A = [nt', oo), where

ny' is the root of the linear function in (2.3). The error probabilities are then given

approximately by

I- a .P, 4 /n- JAI(2.4)

where

* (z)= e-t 2 /2dt.

Now in order to have PO - a, we must take -' = (ao/V/'n)-((a) + Mo, and substituting

for f' in the expression for P we obtain

P1 = 1 -/' -A 0 (2.5)

Now 4(x) is an increasing function of x and so to minimize P1, it is necessary to make

the argument of t in (2.5) as small as possible; that is, to make the argument large in

magnitude and negative. The term -V (/IA - Mo )/al is negative, since we are assuming

that po </IA, and it increases in magnitude as n increases, so that P, - 0. The quantity

(jAI - jIo)/a determines the rate at which P, goes to zero, and we can see that the best

13



asymptotic performance results when this quantity is maximized. Since it is positive, it

is also dear that maximizing (pi - po)/ol is equivalent to maximizing the quantity

(Al - AO) ,
2 

(2.6)

Assuming now that a 2 > a2, we will obtain the same performance measure; the

case of uo2 < will not be considered since the analysis parallels the case of 0 >al

and the same result is obtained. We see that the test (2.3) is identical to the test (1.3) if

A = (n y1, n-]2j, where n-y and n- 2 are the roots of the quadratic in (2.3). £he quantities

71, 7/2 are given by the expressions

M/ x = i_- ;Mo? - _0o, VI(Mi - Ao) 2 - -t(02 - 0,?)

(2.7)

A, 0 - O.71 + a0a, V/(/I - p )2 - /(o2 - a?)
72=2

and error probabilities are given approximately by

P, 0~ [ 72 -MAO] [,/n71; - A(]8= [7 ] +~[~7iM~](2.8)

Substituting for 71 and 72 yields

P0  = v [, npeO(/Ai _'0 + O01 v(2)] s[,/no( ;Al - UO) - O01 v(7)
0o~i (2.9)

-yO _ o)(72(72

where v(7) = ,/(pl - po) 2 - 7(aOo - a? ). Thus we have the approximate error probabil-

ities given as functions of a parameter 7.

For situations where the error probabilities are relatively small, little is to be

gained by preferring a two threshold test to a single threshold test. This is the gist of
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Proposition 2 below. In order to make the proposition precise, it is necessary to assume

that T. is truly Gaussian and not merely an approximation.

Proposition 2. Let Tn be a test statistic which has the distribution K(nuj, na;)

under hypothesis H, for i = 0, 1, with aio > a'e. Let Po2) ad p1 ) denote the error

probabilities for the decision rule d( 2 ) of the form (1.3) with A = (n-yl, n-/21 where y and

72 are given by (2.7). Let R ( l ) and p~l) denote the error probabilities for the decision

rule d(l), also of the form (1.3), but with A = (n'y, oo). Assume that the thresholds are

chosen for each sample size n so that p( 2 ) - a. Then as n - oo, we have

- p l
p(2 0.p - °.

Proof. Define

0"1(/1 - o) + aoV(0) A, -o(g, - Ao) + a, V(7Y)

=- o) - ov(Y) a 0o( - 0o) - oiv(-)V2= o - 2" A2= 002 _ 0"2

Then from (2.9) we have

p'2 = $(-2) 1 ) + n(-V 2)

P l) = (-,' 5 V2).

and

p(2) = ,(4"nA) - n(v"A2). (2.10)

Since A, > 0"o(gi - o)/(02 - .?) > 0, the first term of (2.10) converges to I as n -- oo.

But Po2 ) - a, so the second term converges to I - a. Therefore A2 --- 0. This implies

that v(y) -- ('o/ola)(Mi - Mo) and thus

(.02 + 02)(A- _o) At - goS a, ,(,0 _al) 0, V2 --1> 0.

1a5



The proposition will follow if we can show that

4(-Ven-v• -'. 0.

To do this, use the inequalities (8,p.39]

1 / 1 ) _=21 _=

- 1 - e- 2 2 <@(X) < /2

which are valid for z < 0. Thus we have

4(-V" ~s) v v2-1

Because the test statistics which we consider are only approximately normal, this

proposition does not directly apply, and it has been presented to provide a heuristic

argument for a single threshold test. In fact, the proof of the proposition depends in a

crucial way on the tail behavior of the distributions, and for a series which converges

under a central limit theorem, convergence is usually slowest in the tail region. In most

practical situations, however, the realizations of the test statistic under Hi tend to pile

up around npi, so that if n(p, - Ao) is large then a two threshold test offers no advantage

over a single threshold test. Thus we may justify a single threshold test not only on a

heuristic basis but also from practical considerations.

We are now ready to derive the performance measure S1 for the case where oj >

a2 and where a single tareshold test of the form (1.3) is used. With A = [n7,0o), we

have the error probability under Ho given approximately by

16



If we set P = a then we find the value of - to be

- O - 1'

On the other hand, the error probability under H1 is given approximately by

Lo0 (t) - ,f-M1 '] (2.11)

where the last equality in (2.11) is obtained by making the substitution for f. Now the

quantity 00/01 does not depend on the sample size n. Therefore the quantity (ji, -Ao )/o

again determines the rate at which P converges to zero. By the same reasoning as before,

then, we see that the best asymptotic performance results when SI, as given by (2.6), is

maximized.

The results obtained in this section do not depend on the form of the test statistic

T, only on the assumption that there exist the constants AO, pl, ao, and a1 such that

(T. - npj)/V/;or converges in distribution to a standard normal random variable when

Hi is true. In the remainder of this chapter, we restrict our attention to test statistics of

the form Tn = 'i: g(z,) where the conditions of Theorem 1 hold. Thus the "moments"

A0, 14, o, and a2 are given by (1.7) and (1.8) and the performance measure S1 becomes

a functional of g.

2.2 The Optimal Nonlinearity

In the first section of this chapter we showed heuristically that the best test

statistic in the asymptotic sense for the Neyman-Pearson problem (2.1) is that for which

the performance measure S1 is maximized. In this section, we will consider the following

optimization problem

maximize 91(g) = [(.2(g) - )(g)](
a,7(g)

17



subject to the constraints that E, g2 (X 1 ) < oo for i = 0, 1. Thus if g, solves (2.12), then

the test statistic T, = Z gi(z,) is uptimal in the sense of Section 2.1 over the class of all

memoryless test statistics (1.4). In the next section conditions are given which guarantee

that the nonlinearity g, derived in this section satisfies the constraint El gf(XI) < 00.

In order to have Eog?(XI) < oo, then, it is sufficient to require that f0(x)/fI(x) be

bounded for al x, and we shall make this assumption. We shall also take this condition

to mean that fl(z) = 0 =* fo(z) = 0 as well. We assume that g and all the densities

involved are continuous so that we can apply the classical techniques from the calculus

of variations. Naturally we will have to assume that the conditions of Theorem I are

satisfied under each hypothesis, so that the test statistic T, satisfies our assumption

of asymptotic normality. In this section, however, we shall require the more stringent

condition that the observed process be m-dependent under either hypothesis. Observe

that for an m-dependent process the expression for o (g) as given by (1.8) becomes

m
471(g) = Ei g'(XI) + E, g(XI)g(Xji+,) -(2m + 1) [E, g(XI)j 2 . (2.13)

At the end of this chapter, we shall discuss the extension of the m-dependent results to

the more general case of 0-mixing processes, and show that for all practical purposes,

4-mixing processes can be approximated by m-dependent ones.

In the remainder of this section, we derive an integral equation for whLh the

optimal nonlinearity g, is a solution. We begin by observing that the value of S, is

unchanged when g is multiplied by a constant, hence we can maximize (pt - A0)2 with

471 held constant. But under our assumption that j'l - p<o > 0, maximizing (1'l - 10o)2 is

equivalent to maximizing pi - MO. We will therefore introduce a Lagrange multiplier A

18



and consider the problem

maximize IL1 -/po - Aa. (2.14)

Now define J(g) = I -po-)af. A necessary condition for g to maximize J(.) is that the

Giteaux variation of J evaluated at g vanish. Thus we must have AJ(g + cbg),= = 0,

where 6g is an arbitrary continuous function satisfying Ej 6g 2 (X 1 ) < o0 for i = 0, 1.

Since

J(g + ,Eg) = J(g) + E[EI 6g(X 1 ) - Eo 6g(X) - 2A{El g(XI)6g(X 1 )

+ Z [EI g(Xi)6g(Xi+I) + E, g(Xj.,)bg(X 1 )] (2.15)
j= 1

-(2m + 1)E1 g(XI)E1  + E
3 [-b'X()g)],

which is a quadratic function in e, the Giteaux variation is given by the coefficient of C.

Denote by ft and f,' the densities of X, and (X1 ,X 3+,), respectively, under Hi. If we

introduce these densities into the above expression and set the coefficient of c equal to

0, we obtain

0 = Jg(x){If,(z) - fo (z) - 2A [fi (z)g(x)

in (2.16)

+ f( fixy)+ fli(y,z) (2m + I)fx(x)fi(y))(y)dy3}jdx. (.6

The right-hand side of (2.16) will be zero for arbitrary bg iff the quantity in the braces

is identically zero. Setting this expression equal to zero, we easily derive the fohowing

integral equation:

2Ag() - fW - f(x) + 2A I K1 (z,y)g(y)dy (2.17)
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with the kernel K, given by

1 m
K,(x,y) =(2-,+ 1)f,(y)- f --- [f(,)+fyz].(2.18)

j) i

In the next section we will discuss the conditions which guarantee the existence of a

solution to this integral equation. For now, we note that in order to divide by fi(x) as

we have done, we require the absolute continuity condition fl(x) = 0 =* fo(x) = 0.

We have derived the integral equation (2.17) as a necessary condition for g to

solve the maximization problem (2.14). However, if g solves (2.17) then J(g + c6g) =

J'(g) - EAtI so that J(g) _ J(g + e6g) provided A > 0. Thus if A > 0, the condition

that g solve the integral equation (2.17) is also sufficient for g to solve the maximization

problem. Observing the form of (2.17) it is obvious that A determines the scaling of g,

thus we may take an arbitrary (positive) value for A. In the analysis that follows, it will

be convenient to take A = I., and with this value the integral equation (2.17) becomes

_fi(x) -o(x) ,f
z=) K,(x, y)g(y)dy. (2.19)

If we make the substitution g(z) = h(x)/V/jx, the integral equation (2.19) becomes

h(z) = fi W -fo() +JI Ii(x, y)h(y)dy (2.20)

which has the symmetric kernel

K(z, y) = (2m + 1)[f,(z)fi(y)] - [f(x) f(y)f -  Z[f (x,y) + f j(y,x)]. (2.21)
j=1

Our purpose for making the substitution for g to get the equation (2.20) is to permit us

to apply the Hilbert-Schmidt theory for symmetric integral equations. This is the topic

of the next section.
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Consider now o,2(gl), which we may write in the form

91 - g(z)I(z)dz+ E, gi(x)g(y)[fj7( ,y) + fIj(y,x)]dxdy

- (2m + 1) Jfgl(x)gl(y)fi(z)f(y)dxdy

-- g1(z)f(z)[ (z) + ] (z) E[ fj(z,y) + fl(y,z)]
j=1

- (2m + 1)fl(y)Igi(y)dY]dx

=Jgi (X) f, (X) (g,() - J KI(x~y)g()dy~dx

From this expression it can be seen that if g, solves the integral equation (2.19), then

o'(g1) =p(gi) - po(gi), and thus SI(gi) = i(gl) - po(gi) is the optimal value of S1 .

We summarize the results of this section in the following theorem.

Theorem 3. If the process {X} is m-dependent under both He and H1 , then a

sufficient condition for g, to maidmize S is that g, solve the integral equation (2.19).

Furthermore, if g, solves (2.19) then Si (gl) = jl (gi) - uo(gl).

2.3 The Solution of the Integral Equation

To apply the theory of Fredhoim equations we require the following two conditions:

(a) f [fi() -fo(X)1] 2 dz<0

(b) JJ IK(x,y)I2dxdy < o.

Under the assumption that fo(z)/fl(z) is bounded, the condition (a) follows easily. To

show condition (b), we assume that the densities fj(z, y),j - 1,....m have the diagonal
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expansion (51
00

f?(z,y) = fi(z)fi(y) E a)'()9 1 (Y)" (2.22)
,t=1

where the functions {GO} are orthonormal in the sense that f em(X)8n(z)fI(z)dz =

Some examples of densities which are known to have such an expansion are the Gaussian

and gamma densities. Consider now the terms in the expansion of IK* 1 2. We examine

only the terms of the form fj(z,y)f (z,y)/[fi(z)fl(y)], the other terms being more

obviously integrable. If we introduce the expansion (2.22) and apply the orthogonality

relation, we have

f1(~fty )  --- E an ~ank OJJ fi(XIy)n=ddl
'n0

from which the condition (b) follows. Conditions (a) and (b) are sufficient to guarantee

that the solution hi(z) = /fl(z)gj(z), if it exists, is square integrable, and this in turn.

implies that El gII(XI) < 0o.

In the lid case, the kernel K* reduces to [fi(x)fi(y)]f, and it is easy to verify the

solution

h(z) = cfi(z)- - fo(z)

where c is an arbitrary constant. Note that the absolute term of the integral equation is

of this form when c = 1. We may therefore define hiid by

hIjid(z) = fz) - fo(z) (2.23)

and write the integral equation as

h(x) = hiid(Z) + J K'(x,y)h(y)dy. (2.24)
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When the process is not id, we can still solve the integral equation using the

Hilbert-Schmidt theory, provided we can find the eigenvalues and eigenvectors of the

kernel. According to the theory, a unique solution exists provided the conditions (a) and

(b) above hold, and provided +1 is not an eigenvalue of the kernel. If I is an eigenvalue,

a (non-unique) solution still exists, provided the absolute term hiid is orthogonal to every

eigeuvector corresponding to the eigenvalue 1. We shall see that 1 is an eigenvalue of

the kernel Kt*, but that in most cases a solution still exists.

If we assume that the densities fji, j - 1,..., m have the expansion (2.22) and

we introduce this expansion into the kernel, we have

K'r (z, y) = V ()[(2m+ 1)- 2(() (2m(+)1)(Y) . (2.25)

Usually we will have e0 (z) 1- for such an expansion, and in such cases Kj* will have

eigenvalues {A,} and eigenvectors {O} given by

A0 = 1

An = -2Zajin (n >1)
j=1

On = VAOn (n > 0).

Since Ao = 1, we must verify that hiid is orthogonal to 00 = IT,, which is trivial:

f hiid(x),o(x)dx = fi (z) - fo(x)dx = 0.

If An # 1, n > 1, we have the solution

h(z) = hid(X) + E 1nc - (X) + C4o(X)
n>1- A

AnCn

23



with

Cn= Jhd(x)0.(z)dz J fi,()-fo(z)]((2.26)

and c an arbitrary constant. Therefore, the nonlinearity g (with c = -1) is given by

g(z) = -W A, O(z). (2.27)

2.4 Extension to 0-Mixing Processes

In this section we consider again the optimization problem (2.12) under the more

general case where the processes are assumed to be 0-mixing. We will use a compactness

argument to prove that the optimization problem has a solution g, and then show that

if gm) solves the integral equation (2.19) then the sequence S1(g( "7) converges to the

optimal value S1 (gl) as m - oo. Obviously, similar results hold for the performance

measure So.

First, let us define some new symbols. Let L2(fl) denote the Hilbert space con-

sisting of the Borel functions g such that f g2(z)fl(x)dz < oo with the inner product

(g,h) = f g(z)h(z)fl(z)dz and norm Ilgil = [f g2(x)fi(z)dz]k. Let Q be the subset of

L2(fl) which contains the elements r such that f g(x)fl(z)dz = 0 and f g2(z)f1(z)dz =

1, and note that 9 is compact. Define

,,,(g) = Eig2(X) + 2 Eig(X)g(Xj+)-(2m+ 1)[E g(X,)]2  (2.28)

j=1

and

slM)(g) = [I '(g) - ito (g)] (2.29)
1,,n(9)

for i 0, 1. If the process is m-dependent under Hi then o:m = a2. Finally, let g(m)
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denote the solution to the integral equation (2.19), which by Theorem 3 maximizes S(m)

over the space L2(fl).

Lemma 4. The functional S( ' ) is continuous.

Proof. That the numerator of (2.29) is continuous follows from the Schwarz inequality

and the assumption (a) of Section 2.3:

i (g) - M(g)] - [il(h)- Ao(h)] = I(g- h,(f 1 -fo)IfI)l

<_ Jig - h II(fi - fo)/fil.

Thus -e must show that "i.,() is continuous. The first term on the righthand side of

(2.28) is the composition of the maps g - JIIgJ and z - 2, so it is continuous. The

map g -- f g(x)f 1 (:)dx = (g, 1) is continuous by the R.iesz representation theorem.

Thus the last term of (2.28) is continuous. Now suppose (fl, ,P1 ) is the underlying

probability space when HI is true, and let L2(P1 ) denote the Hilbert space consisting of

all random variables X such that E1X 2 < oo with the inner product (X,Y) = E 1XY.

The random variables g(X,) for j = 1,2,... are in L2(P -.) if g is in L2(fl). Also, if

" fl1 denotes the norm for L2(fl) and 1" 112 denotes the norm in L2 (PD), then Jig -

hill - JIg(Xi) - h(Xi)112 by stationarity. By the contintty of the inner product, then,

IElg(X 1)g(Xj)- Eth,(XI)hY(X1 )l - 0 as -.g-.hlll - 0. Thus the remaining terms of

(2.28) are continuous. 0

Define the class C to consist of all bivariate joint dens-, es which have the diagonal

expansion (2.22) with {g,,} being polynomials.

Lemma 5. If the densities fA, j = 1, 2,... are in £ then the functional S, is continu-

ous.
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Proof. The idea of the proof is to show that S(,,1 converges to S1 uniformly. First we

show that af, (g) converges uniformly to a2(g) for g in 9. Let {,} be the orthonormal

functions in the expansion (2.22). Since g E L2(fl), g has an expansion

g(z)= b.9,(z)

Then, introducing the expansion (2.22) and applying the orthogonality relation, we have

g=~~)I)z JJy Zbba~diz)zd)my)ny~izfiydd
=//E E Eb~b" a )O,(X)OL(X)On(y)O'L(y)fl(x)fl(y)dxdy

1=1 rni n=O

Since fg 2 (z)f 1 (z)dX = = 1 for 9 E C, the maximum value of

Iff g(z)g(y)ji)(z, y)dzdyl is equal to the maximum value of the sequence {laj ) I, n > 1}.

It will be shown in Chapter 4 that this maximum occurs at either a j>j or Ia(j)i.

Since Oi EQ and 0.(8.) -0 1+ 21:Zal' for i = 1,2, we have 1+ E3 c < oo where

= max(Ia(I:, ai), and this series dominates the series a'2(g) independently of g.

Thus a, ,,n(g) converges uniformly.

Now if g is any nonconstant element of L'(fA), then it follows that there exist

constants a, b such that ag+b E 1. Since o,'f,,n(ag+b) converges uniformly, and since S(m)

and S1 are invariant under such transformations of g, it follows that S(')(g) converges

uniformly to S1(g). 0

We are now ready to prove the main result.
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Theorem 6. If the densities fj,j = 1,2,... are in C then there exists a solution

g1 E Q to the optimization problem (2.12). If gm) solves the integral equation (2.19),

then the sequence {S(g1 ))} converges to Si(gi) as m --- oo.

Proof. Since S, is continuous and the set 9 is compact, there exists an element g' of

g such that S, achieves its maximum value on the set Q at g'. If g is any nonconstant

element of L2(fl), then there exist constants a and b such that ag + b E Q. But SI(g) =

S1(ag + b) < S,(g'). Thus g' solves (2.12).

Let E > 0. In the proof of Lemma 5, it was shown that S(m) converges uniformly

to SI. Thus there exists an integer M such that for every m > M and every g E
L2(fl) we have IS(m)(g) - SI(g)l < c. Let m > M be fixed. If 5(m)(1m)) < 51(g)

then we must have g(m)(g) < S(m)(g(m)) < S1(g). Otherwise, we have SI(g(')) <

.,(gl) < 5(m)(g(')). In either case, 5,')(g(m)) - S1(gl) < c. This implies that

ISl(g(M)) - S(gl)l < 2E. 0

According to the theorem, one can achieve a value of the performance measure

S which is arbitrarily dose to the optimal value by solving the integral equation (2.19)

with m sufficiently large.
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CHAPTER 3

THE MINIMAX FORMULATION

3.1 The Performance Measure S2

Before one can determine the optimal test statistic (or nonlinearity) in some class

of allowable test statistics, one must define an ordering on the class. Although the

most natural ordering to consider is determined by the receiver operating characteristic

(ROC), the ROC itself does not provide a total ordering, so that given two different test

statistics one cannot always say which is the better by comparing their ROC's. Rather,

in order to have a total ordering, one must specify a particular region, or operating point,

of the ROC. Under the Neyman-Pearson formulation, this operating point is specified to

be such that P0 = a. Such an operating point may be undesirable when the asymptotic

performance is important since only P, converges to 0 while P0 remains fixed. For this

reason, it may be better to consider the minimax operating point where P0 = P1. The

term "minimax" refers to the fact that the decision rule, including both the threshold

(or the critical region) and the nonlinearity g are chosen to solve the problem

minimize max Pi. (3.1)
2=0,I
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Actually, we shall consider the problem (3.1) in an asymptotic sense, similar to our

method for the Neyman-Pearson formulation. Thus we attempt to maximize the rate

at which max(Po,P ) converges to zero. Note that if the ROC is continuous, then we

can always choose the critical region so that PO = P1, and thus we actually maximize

the rate at which the common value of P and P converges to 0. This rate is given

approximately by the performance measure S2 , as derived in this section.

We proceed by assuming as in Chapter 2 that the critical region A is given by

[n71 , n?2], where 71 and 72 are given by (2.7), so that the error probabilities are given

approximately by (2.9). Now if we choose the parameter 7 = 0 so that v(7) = p, - po,

then the expressions for the error probabilities reduce to

A~~~~ ~ =0 .0vnJI O_ t VJ-
1 0 0 -01 ' ] +(3 .2 )

P, = V - -'O + t[,1n - JO
Pi 0= -O' a-ii V + a,

Now typically the term t[-v/(p 1 - Ao)/(ao - a,)] is orders of magnitude smaller than

the term t[-v'n(pi - A0)/(ao + a,)], and in fact the ratio of these two terms goes to

zero:

lim ado]o a

L-o ,-/AAOo

Thus we may approximate the first term of the expression for Po by 1 and approximate

the first term of the expression for P, by 0. Then we have the error probabilities given

approximately by

Po = P, = t [v/'_ +g (3.3)P aro +' a3.3I

It should be clear from (3.3) that the quantity (pj -pqo)/(ao + a,) determines (approx-

imately) the rate at which P0 and P converge to 0. However, if we assume as we did in
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Chapter 2 that ps > po, then this is equivalent to maximizing the quantity

(/1 + l) 2 "  
(3.4)

(a0 + 0,1)2

This performance measure S2 determines approximately the rate at which P0 and P

converge to 0. It has been derived also in [3] using Chernoff bounds as a nonlocal

approach to the signal detection problem (1.11). The approach here is different in that

the focus is on signal discrimination. Note that the performance measure S2 treats

equally the asymptotic variance under the two hypotheses, whereas this is not the case

for the performance measure SI. However, in the remainder of this chapter we shall see

that S2 is much more difficult to work with analytically due to the nonlinear function of

a 2 and a2? in the denominator.

3.2 The Optimal Nonlinearity

As in the case of the performance measure S1 of the last chapter, the nonlinearity

g2 which maxj-v.zes the performance measure S2 is also given by the solution of an

integral equation; however, the integral equation for this case is nonlinear, and we shall

not be able to ,btain a dosed form solution. The technique used to derive the integral

equation is similar to that used earlier, and we will again assume that the processes are

m-dependent. The value of S2(g) remains unchanged if g is multiplied by a constant,

and we may therefore attempt to maximize (.i, - po) 2 with (ao + al )2 constrained to

be constant. Equivalently, we can consider the following optimization problem which

involves a Lagrange multiplier A:

maximize ja - - A(ro + a ') 2  (3.5)
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To solve this problem, define J(g) = l(g) - IAo(g) - A[o(g) + al(g)] 2, and let 6g be

an arbitrary continuous function satisfying E16g2 (X 1) < oc for i = 0, 1. A necessary

condition for g to solve (3.5) is that 'J(g + c6g),= o = 0. To show the steps involved

in taking the derivative, write J(g) in the following form:

J(g) = i&1(9)- po(g)- A2(g)- Aur(g)- 2A oCg)or (g) (3.6)

Also define Ai(g,6g) by 2Ai(g,6g) = -4-(g + ,Eg)l,=O. Then Ai(g,6g) is given by

Ai(g,6g) = Eg(XI)bg(X 1 ) + Z[Eg(X)6g(Xj) + Eig(Xj)6g(Xi)]
j=1

-(2m + 1)Eg(X 1)E,6g(X 1 ) (3.7)

Now we have for the contribution of the last term on the right of (3.6)

+Iu~~[0+ c~~i969j =[(~~g]['(g)Aj(g,bg) + Ao(g,6g)Tf(g)]

-- A(g,6g) + g) Ao(g,6g)

al (g) ao(g)
(3.8)

The contributions of the other terms are immediate. Thus we have

dE (g + cbg)[e=o

= E16g(Xo) - Eobg(Xo) - 2A 1 + Ao(g,6g) + (1 + LO ) A,(g, g)] (3.9)

We obtain the integral equation by introducing the densities fo, fl, foj = 1... m, and

fj,j = 1 ... m into (3.9) and setting the result equal to 0. This yields

O J6(x){fiz fo (z) -2A ([+ !)[(x) fo (x) +JIko(x, y)()dy]

(3.10)

-2A IL gxhG)+Ik x ~~~y .
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where ki is given by

'i(x, y) E= +[f(zy)+ fi(y,z)] - (2m + 1)f,(z)f,(y). (3.11)
j=l

The equation (3.10) holds for arbitrary bg iff the expression in braces is identically zero.

Thus g must solve the integral equation

2\g()() - fo() - 2A L(x, y)g(y)dy (3.12)
(1 + r)fo(z) + (1 + r- 1)/i(z) j

where r = (a/, /o) and the kernel L is given by

L(z, y) (1+r)Co(z,y) + (1 +r(') (, (3.13)

(1 + r)fo(z) + (1 + r-I)fl(z)

Again we observe that A determines the scaling of g. Thus the particular value of A is

not significant except that it must have the proper sign so that if g solves the integral

equation (3.12), then #1(g) > jso(g). Consider now

[ao(#) + 01(g)12 = (1 + r)aol(g) + (1 + r-1)a2(g)

Sg(z){1[(1 + rofo(z) + (1 + -r1 )fi (-)g(.) (3.14)

J [(1 + T)Ko(xy) + (1 + r

If g solves the integral equation (3.12) for A = 1, then the expression in the braces in

(3.14) reduces to fl(z)-fo(z), and thus [oo(g)+ al(g)12 = l(g)- o(g) > 0. We shall

therefore assign to A the value 1 and henceforth consider the integral equation

fi(x) - f0(-) ((I)( + r)fo(x) + (I + r-171)/()- (xygyd.3.5

Furthermore, we observe that if g2 solves the integral -uation (3.15) then 52(92) =

,01(g2) - io(92), a result which is similar to the one obtained in Chapter 2 for the

optimal value of SI. We have proved the following theorem.
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Theorem 7. If the process {Xi} is m-dependent under both Ho and HI, then a

sufficient condition for g2 to maximize S 2 is that g2 solve the integral equation (3.15).

Furthermore, if g2 solves (3.15) then S2(92) = A1(92) - P0(92).

In comparing the integral equation (3.15) with the integral equation (2.19), we

note first of all that (3.15) is nonlinear because of the fact that r is a function of g. Let us

consider now what happens when r varies. If r is very small, then a, is much smaller than

ao, and thus the value of performance measure 52 is very close to that of the performance

measure So. In fact, S2 - So as r -- 0. Now observe that the integral equation (3.15),

when rescaled, converges as r --+ 0 to the integral equation (2.19) which maximizes the

performance measure $1. This provides us with some insight to the relation between the

performance measures So, S1, and S2 and the role that r plays in the integral equation

(3.15). We observe, for example, that there is a conflict of objectives for very small

r in that the value of the performance measure S2 is approximately equal to that of

So, while the integral equation (3.15) provides a nonlinearity which is close to the one

which maximizes the performance measure 51 . A similar conflict occurs n. r approaches

o, with the roles of S and S reversed. Of course, there is no conflict of objective if

So S1, but this implies that r ; 1. Thus we expect that r will have a "reasonable"

value on the order of one. We find this to be the case in Chapter 5 where a numerical

solution to the integral equation (3.15) is found.

3.3 The Solution of the Integral Equation

The equation (3.15) is nonlinear because r is a function of g, and for this reason,

finding a closed form solution is rather difficult. If, however, we had clairvoyance to
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know the correct value of r, then we could find the solution g2 by solving a linear integral

equation. In fact, we might try to guess the value of r, find the solution of the resulting

linear integral equation, and then compute r to verify if our guess was correct. This

suggests an iterative method where the computed value of r from the previous solution

becomes the new value for r at the next iteration of the procedure. This method is used

to obtain a numerical solution to (3.15) in Chapter 5; it is found that the successive

values of r do in fact converge.

Although we cannot find a closed form solution to (3.15), we may treat r as

a constant whose value is unknown, and thereby extend the analysis relating to the

equation (3.15). If we make the substution

h(z) = g(x) V(l + r)fo(x) + (1 + - 1 )fi(x),

we obtain the integral equation

h(z) = fi -fO(z) + L-(z,y)h(y)dy (3.16)

where the symmetric kernel L" is given by

L*(xy) (1 + r)ko(c, y) + (I + r-) 1 ,(z,y) (3.17)
Vw7 (x)w(y)

and where w., is defined by

w1.(t) - (1 + r)fo(t) + (1 + r-1 )f(t). (3.18)

For a given value of r, the integral equation (3.16) is a Fredholm equation of the second

kind, provided we have the conditions

(a) J [V(x) - fo(X) 2d <00

(b) JJ IL*(z, y)I 2dxdy < oo.
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These conditions imply that the solution h is square integrable, and then it follows

that that E, g2(XI) < oo for i = 0,1. Note that we do not require the condition that

fo(z)/fi(z) be bounded as we did for the integral equation (2.19). Condition (a) follows

from the fact that lfl(z) -fo(z)/wr(z) is bounded by (1 + r)-1 + (1 + r - 1) - 1 . To show

that condition (b) holds, it suffices to show that

ki (--, y) dzdy < oo (3.19)

since we may then apply the Minkowski inequality. If all the joint densities involved

have the expansion (2.22), then the inequality (3.19) follows from a similar argument for

the case of the kernel K* in Chapter 2. For example, consider the terms of the form

wr(x)w (y) - (1 + r)2fo(x)fo(y)

It was shown in Chapter 2 that such terms are integrable. Thus condition (b) holds.

Since the integral equation (3.16) has a symmetric kernel, the Hilbert-Schmidt theory

applies as in Chapter 2. If the eigenvalues and eigenvectors of the kernel (3.17) are

denoted by {A,} and {0,,}, then a solution h2 of the integral equation (3.16) has the

expansion

1 2 (x) = h(x) +

(3.20)
00

- A,n= O

where
whee h(z) A W) - fo W)

fi(XWf(X)

and

C= h'(x)(n(X)dx.
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The solution is unique if and only if A, # 1 for all n. Since we do not have clairvoyance

to know the true value of r, the solution (3.20) is purely academic.

If the process is iid, then the kernel L from (3.13) has the simpler form

L(z, y) = (1 + r)fo(Z)fo(y) + (1 + r-1)fo(z)fl(y)
(1+ r)fo(z) + (1 + r 1 ) 1 (z)

and the integral equation (3.15) has the solution

Boo(z) + Bif,(x) (3.21)
(1 + )fo() + (1 + r-)f1 (x)

where Bo - [(1 + r)o - 1] and B = ((1 + -r1 )Ii + 1]. There are three unknown

quantities in the expression (3.21): r, /o, and ui. These quantities can be found by

solving the following system of nonlinear equations:

gso =J g,,d(z)fo(z)dx

Ji = jgd(z)fi(z)dz (3.22)

Note that giwd(z) + C solves (3.15) for an arbitrary constant C. We may therefore take

an arbitrary value for either SO or/14. In fact, with r fixed the first two equations in

(3.22) are linear in Po and ui and axe singular. Therefore the system (3.22) does not

have a unique solution.

3.4 The Performance Measure 5 3

The performance measures So and 51 which were derived in Chapter 2 have the

undesirable feature that they treat unequally the performance under the two hypotheses,
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and yet they are relatively nice regarding analysis since they lead to linear integral

equations. On the other hand, the performance measure S2 treats both hypotheses

equally but leads to a nonlinear integral equation. We are led to consider also the

performance measure
[ = b,1 -23 =(3.23)

which treats both hypotheses equally and leads to a linear integral equation as well. This

performance measure is derived in this section by considering Chernoff bounds for the

error probabilities, and is actually a slight modification of the method of Sadowsky and

Bucklew [3] in which they derived the performance measure S2.

If the test statistic T, has a normal distribution with mean npi and variance na?

then these are the Chernoff bounds:

P[T,. 2_ nT]j _< exp[-n/d7-)] if Ai < -7

(3.24)
P[TI : nTy] < exp[-n.i()] if Ai > 7

where
(.- 7)2

I,(7) - 2U, (3.25)

The Chernoff bounds are asymptotically tight in the sense that

1!
lim - 1log P[Tnt >_ nTy] =//j(7) if Ii < -y

lim -- 1 log PtTn : n7]= I( ) if > 7
n-on

and they henc- can provide good approximations to the error probabilites if n is large.

Of course, if the distribution of Tn is only approximately normal, then the bounds given

by (3.24) are only approximations of the true Chernoff bounds. Nevertheless, we shall

proceed under the assumption that such approximations are acceptable. From (3.24) we
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see that if n-y is the threshold and po < y < i, then I determines (approximately) the

bound for the error probability Pi. Since a larger value for Ii results in a smaller bound

for P, it is desirable to make both Io and 1 as large as possible. It is obvious that Ii

is a convex function of y which takes its minimum value at 7 = p. Thus as 7 increases

from po to Al, I0 increases and h1 decreases. Sadowsky and Bucklew [3] proceeded from

this point by maximizing the min(Io, 1) and obtained the result that

S2 = max min l(y).
s&O<"Y<JC i=O,1

It is fairly straightforward, however, to show that

S3 = max (o(7) + I()
so <-f <,

and this justifies the use of performance measure S 3 .

The following method for maximizing 53 is very similar to the method in Chapter

1 for maximizing 51, and we must assume that the processes are m-dependent. We know

that g maximizes 53 if and only if g maximizes J3(g) =/Il(g)- lo(g)- A[02(g) + a (9

where A is a Lagrange multiplier. The condition that J(.) vanish at g leads to the integral

equation

2Ag(z) =f(z) - fo(z) _ 2A J M(, y)g(y)dy (3.26)
fo(z) + fi(I)

where the kernel M is given by
M(zi) = Ko(z,Y) + ki(xy)

fo() + fA()

The functional J3 is convex in g, provided A > 0, so that the condition that g solve the

integral equation (3.26) is also a sufficient condition for g to maximize 53. We therefore

take A and the integral equation (3.26) becomes

fi(z) -fo(x) _i r~ ~yd
g() fo(z)+f() - M(,y)g(y)dy. (3.27)
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We can also show easily that if g3 solves the integral equation (3.27), then 06(g3) +

ao(g3) = MI(g3) -/o(g3) so that the optimal value of S3 is S3(g3) = P1(g3) - p0(g3).

These results are summarized in Theorem 8.

Theorem 8. If the process {Xi} is m-dependent under both Ho and HI, then a

sufficient condition for g3 to maximize S3 is that g3 solve the integral equation (3.27).

Furthermore, if g3 solves (3.27) then S 3 (g 3 ) = IAI(g3) -/z(g3).

The integral equation (3.27) can be transformed into an integral equation with

a symmetric kernel by making the substitution h(z) = g(z)V/fo(z) + fl(z) so that the

Hilbert-Schmidt theory applies as before. We shall not pursue this further. We shall,

however, proceed to find the optimal nonlinearity for iid processes. If the processes are

both iid, then the kernel M has the form

fo(Z)fO(y) + fI(X)fI(Y)
M(z, y) = fo(z) + fl(z)

and the integral equation gives us immediately the form of the iid solution:

Bofo(z) Bif1(x) (3.28)
fo(.z) + h Wx

where Bo = Po - 1 and B, = ;l + 1. To find the unknown constants B0 , B1 , we subtitute

for giid in the linear equations

P = Bo +1=1 giid()fo(z)dx
J (3.29)

-= B, - 1 = Jgiid(X)fl(x)dx.

The system (3.29) is in fact singular, so that we may take either Bo or B, to be arbitrary.

Therefore we shall arbitrarily take Bo = 0 and this gives us the value

B,= fo(z' ))dx (3.30)
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Thus the iid solution has been determined explicitly.

3.5 Extension to O-Mixing Processes

The results probed in Section 2.4 are also true for the performance measures S 2

and S3. Because of the similarity of these two performance measures, the proof for

either case is nearly identical; therefore only the results for 52 will be stated and proved.

The notation is as follows: Define the density w = 2(fo + fl) and let L2(w) be the

Hilbert space of Borel functions g such that f g2(z)w(x)dx < oo with the inner product

(g,h) = fg()h(z)w(x)dx. Note that g E L 2(w) implies that E g2(X1 ) < oo for i = 0, 1.

Let a?,,(g) be defined by (2.28) and define

S(m)(.g) - [Ai(g) -11g),2(.)
[=om - (3.31)
[,,o.,,(g) + ,,,,,,(g)]

We denote by C the class of joint densities which have a diagonal expansion, as in

Section.2.4.

Lemma 9. The functional S "m) is continuous.

Proof. It was shown in the proof of Lemma 4 that the numerator of (3.31) is continuous

and that u,,m(g) is continuous. Since additions, square roots, divisions, etc. preserve

continuity, it follows that S m) is continuous. 0

Lemma 10. If the joint densities /, i = 0,1, j = 1,2,..., are in C, then the

functional S2 is continuous.

Proof. The proof consists of showing that So')(g) converges to S2(g) uniformly for

g E L2(W). Define 9i to be the class of all functions g E L 2(w) such that E, g(Xi) = 0 and
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E g2(X1 ) = 1. From the proof of Lemma 5, it follows that Om(g) converges uniformly

for g E 9j. Now suppose that g is an arbitrary nonconstant element of L2(w). Then there

exist constants a, and bi such that gi = aig + b E 9i, and obviously om (g,) = aa?,,. (g)

for ail i-. and oi(gi) - aoa(g). Let c = ai/al. Then w. can write

I 52(g) - S2,m,(,)j 1 #1 (g1) -so(gi) 1 2 [ O(g1) 12 (3.32)

[Zaocgo) + oi(gi)j cfao(go) + foj + [a1 (g1 ) + ellj

where co and e1 converge to 0 uniformly for g E L 2(w) as m -- oo. The righthand side

of (3.32) is continuous as a function of c for c E [0, oo) and approaches 0 as c approaches

oo. Thus for c0 and 4E fixed, the righthand side attains its maximum as c varies, and

this maximum converges to 0 as co and el approach 0. Hence convergence of S(-) is

uniform. 0

We are now ready to prove the main result.

Theorem 11. If the joint densities fA, i = 0,1, j = 1,2,..., are in C, then there

exists a function 92 E L 2 (w) which maximizes S2. If g2,n) solves the integral equation

(3.15), then the sequence {S 2(9 2(n))} converges to S2(92) as m -- oo.

Proof. Define 9' to be the subset of L2 (w) consisting of the vectors g satisfying

f g(z)2 w(z)dz = 1. Since S2 is continuous and the set 9' is compact, there exists an

element g2 of g' such that S2 achieves its maximum value on the set g' at 92. If g is any

nonconstant element of L2 (w), then there exist constants a and b such that ag + b E G'.

But 52(g) = S2(ag + b) < S2(g2). Thus g2 maximizes S2

Let c > 0. By the proof of Lemma 10, S(' ) converges uniformly to S2. Thus

there exists an integer M such that for every m > M and every g E L2(w) we have

IS(-)(g) - S2(g)l < c. Let m > M be fixed. If 5,m)(9(")) <2(2), then we must have
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S_)(92) < 5s2&)(g2)) < S2(g2). Otherwise, we have S2(g(m)) :_ S2(92) _ -sm)(g().

In either case, IS2(')(g ( 'm)) - S2 (g2)1 <c , and this implies that IS2(g2m)) - S?(g 2 )I < 2e.
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CHAPTER 4

MINIMAX ROBUSTNESS

4.1 The Robustness Problem

When the actual probability distributions of the observed processes are precisely

the same as the distributions which were assumed in deriving a particular test, then

this is referred to as a matched situation. The performance of a test in the matched

situation is certainly an important consideration. However, also of great importance is

the performance of the test under the mismatched situation, where the actual probability

distributions are close to but slightly different from the assumed distributions. If a given

decision rule performs relatively well in the mismatched situation, as compared to the

matched situation, then such a decision rule is said to be robust. It is the purpose of this

chapter to address the issue of robustness in relation to the performance measures S1,

S3 and the corresponding optimal test statistics as given in the preceding chapters.

To begin, we must first make more precise mathematically the discussion of the

preceding paragraph. One approach to robustness which has become very popular and

which will be considered here is inimax robustness, a game theoretic approach. Define

the Q0 and Q1 to be classes of distributions which are possible under the hypotheses
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Ho and H 1, respectively. These uncertainty classes are to contain the "nominal" distri-

butions (those distributions which are assumed initially) as well as those distributions

which are only slightly different from the nominal distributions. Now define the least

favorable distributions F; E Qo and Fj* E Q, to be the distibutions which together with

the nonlinearity g* form a saddle point for the performance measure S as follows:

S(g,F;,F) :_ S(g*,F ,Fj) :_ S(g',Fo,F) (4.1)

where g is any other allowable nonlinearity and F0 and F, are arbitrary distributions

from the classes Qo and Q1. In this case g is called a minimax robust nonlinearity, and

has the property that for any pair of distributions in Q0 and Q1, the value of S evaluated

at g* is guaranteed to be at least S(g*, F;, F").

The idea of this approach is like that of a game in which nature chooses the distri-

butions F0, F out of the classes Q0, Q, and the human player chooses the nonlinearity

g, the performance measure S(g, F, FI) being the payoff. The first inequality in (4. 1) is

usually not difficult to show. Indeed, if the least favorable distributions are known then

finding che nonlinearity g* is merely the problem considered in Chapter 2 or Chapter 3.

What is usually more difficult is finding the least favorable distributions F0", Fj* and

showing the second inequality in (4.1). Obviously g*, F;, and Fj' solve the minimax

problem

min max S(g, Fo, F1 ) (4.2)
Fo,F g

and in fact solving (4.2) is the simplest way to find F;' and Fl", if they exist. That the

solution g*, F;, F1" of (4.2) satisfies the left inequality in (4.1) is obvious, and the main

task in proving a result in robustness is showing that such a solution also satisfies the

right inequality. Equivalently, one might try to show that 9g, Fo', F' solve the maximin
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problem

max min S(g, Fo, FI) (4.3)
g Fo,F,

since the solution of (4.3) satisfies the right inequality in (4.1).

If one defines a metric on some class M of probability distributions, then a quite

natural way to define an uncertainty class Q about a nominal distribution F is to include

all distributions in M which are at a distance e or less from F. Such a definition might

be appropriate for minimax robustness if one wishes to exploit continuity properties of a

performance measure, since by continuity there will be a small change in the performance

if the distance between the distributions is small. The c-contamination class which

we shall consider here is useful in a different sense and is defined by Q = I F :F =

(1 - E)' + cH,H E M}. Evidently, every distribution in the class Q is a mixture

of the nominal distribution F and some unknown distribution H with weights (1 - E)

and e. The corresponding physical interpretation is that an observation comes from the

distribution F with probability (I - c) and from the distribution H with probability C.

Thus if F is a univariate distribution and the process is iid, then out of n observations,

approximately (1 - c)n will be from the distribution F and approximately en will be

"corrupted" observations from the distribution H. Therefore in the iid case such an

uncertainty class has a pleasing physical interpretation. However, if the process is not

iid, as we wish to assume, then F is an n dimensional distribution and the interpretation

is that with probability c the distribution is completely unknown. This interpretation

is not particularly desirable, a-'4 we shall therefore modify this particular uncertainty

model.

Since the performance measures we have derived involve only the marginal and

bivariate joint densities, we shall attempt to define uncertainty classes which involve
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only these densities. In particular, we shall assume that the nominal distribution for our

uncertainty class Q is iid with marginal density f. The class Q is then defined to contain

all stationary process distributions F such that the marginal density corresponding to F

is contained in an c-contamination class about the nominal j, and such that the bivariate

joint distributions satisfy the condition

sup _Cv[_(xl)_g(XJ+_)_l < r (4.4)
g -,/Varg(X1 )Varg(Xj+) -

where g ranges over all measurable functions satisfying E g2(Xi) < oo. Since we assume

stationarity, the denominator is actually just Varg(X 1 ). The condition (4.4) is our way

of allowing for some uncertainty in the dependency structure of the process, so that not

every process in the class Q will be iid. Thus the uncertainty class Q is specified by

giving the nominal density f, the parameter c, and the sequence {ri}.

In the analysis that follows, the least favorable marginal and bivariate joint dis-

tributions are derived, and two issues regarding these least favorable distributions must

be addressed. First, it must be shown that there do in fact exist stochastic processes

having the prescribed distributions, and second, it must be shown that the processes

satisfy a mixing condition, so that the central limit theory may be applied as in the

preceding chapters. The necessary results for these two issues have been derived by Sad-

owsky [9] and we shall adapt them as needed. For a fixed marginal distribution function

F, the least favorable bivariate distribution functions are given by (F being the joint

distribution function for X, and Xj+1 )

F(x,,y) = (1 - rj)F(x)F(y) + riF(x A y), j = 1,2,... (4.5a)

where z A y is the minimum of x and y. If the distribution function F has a density f,
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then we may write for the bivariate densities

f (T,y) = (I - rj)f(x)f(y) + rj6(x - y)f(x), j = 1,2 .... (4.5b)

It can easily be seen that for such distributions equality is achieved in (4.4) for any g

such that Eg 2 (Xl) < oc. When a 2(g) is computed using the bivariate distributions

given by (4.5) and R = r < oo, then we have

a 2(g) = (1 + 2R)Varg(XI) (4.6)

which depends only on the marginal density. Furthermore, if we define g to be the class

of all measurable functions g such that Varg(X 1 ) = 1, then the supremum of a 2 over g

is achieved by every g in 9 and is equal to (1 + 2R). That a process exists which has

distributions given by (4.5) is shown in two different constructive proofs by Sadowsky
00

[9]. Let {Oi} be a sequence of nonnegative real numbers such that 0i = 1. Then

00

in these two constructions the r-sequences are given by rj = O,Oj+, in one case

00=

and by rj = Z m -Om in the other. Thus in Sadowsky's constructions, arbitrary

r-sequences may not be possible. Note that if the sequence {0,) takes positive values

only for i = 1,2,..., m, then the processes in either construction are m-dependent.

The following central limit theorem, from [9], is appropriate:

Theorem 12. Let 0 < 6 < oo and set q = 6/(2+ 6) if6 < oo or -tq= 1 if6 = 0.

Let {X} be a stationary strong mixing process which satisfies (1.9) with

0

Z aq < 00, (4.7)
j=4
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and let g be a Bore] function such that E 1g(X 1)12+ 1 < 00 if 6 < oc or such that Ig(Xj)l

is almost surely bounded if 6 = oo. Then the sum 0,2(g) defined in (1.8) converges,

and [T,.(X) - nA(g)]j// a(g) converges in distribution to a standard normal random

variable, provided a2(g) > 0.

Further results from [9] show that the process is strong mixing and the condition (4.7)

is satisfied if there exist constants K > 0 and e > 0 such that rj < Kj-(l+ 2q+E)/q. Thus

if the r-sequence is dominated by an exponential sequence, the condition (4.7) holds. To

apply the theorem, then, it remains only to show that Ejg(XI) 2+6 < oc, and this holds

in particular if g is bounded. Thus the two issues mentioned above are resolved.

Because the condition (4.4) is defined in terms of a supremum over second-order

functions g, it is not directly obvious whether a given bivariate distribution satisfies such

a bound. In order to determine whether the bound holds for a given bivariate density

fi, it is useful to consider the diagonal diagonal expansion (2.22), if it exists. Any g

which satisfies f g2(z)f(x)dz < oo has an expansion g(z) = ,bO,(x), and for such

an expansion, we have as well that

f g(x)f(x)dx =n
JJg(x)g(y)fj(x, y)dxdy n

if n

g(z)f(x)dx = bo.

These expressions imply that

[Cov~g(X i),9(-Vj+i)]l n> 1( .8
-__________ 7> (4.8)

Var g(X) E Zb,
n>8
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Since Cov[g(Xi),g(X~jl)]/Varg(X1 ) is invariant under the scaling of g, we can assume

without loss of generality that E. bn - 1, so that the denominator of (4.8) is equal

to 1. Then it is obvious that the sup in (4.4) is obtained by Oi where i is such that

JaHl = max{la)l,n _ 1). If the orthonormal functions {,} are polynomials (that

is, fj is in the class C defined in Chapter 2) then this maximum coefficient occurs as

either aJ or a(J. To show this, we require a fact from [12] that for any such diagonal

expansion in which the orthonormal functions are polynomials, there exists a probability

density function hj having support in the interval [-1, 1] such that a ) = fI- th(t)dt.

Then for n > 2 it is obvious that

(V ) _1 ]thi(t)dt < thi(t)dt 2 aJ]

so that the assertion holds. Let , = f zf(z)dz, (.) = ff z-yfi(xy)dxdy, and

a2 - 2. Then for this case aU) and aU) are given by

aU) a2

U) () + 2a~~2 - 3L ~~ 3)2(0) _ (
-- a - -

In the sections that follow, we will consider the robustness problem (4.1) where

the performance measure S is either S, or S3.We assume that under the hypothesis Hi,

the true distribution of the observed process is in the class Qj, which is defined as above

by the nominal marginal density Al the parameter ci, and an r-sequence which has the

sum Ri. For given marginal densities, it will be shown that the bivariate distributions

defined in (4.5) are in fact least favorable, and this reduces the problem (4.1) to one

which involves only the marginal densities. We now give the least favorable marginal
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densities, which we will call the Huber-Strassen least favorable densitites. These are

(1- o)o(z) if fI(z)/o(z) < c"

(1(c) = (C/O')( - ) if ! (z)/I0(z) > c"
(4.9)

P((z) { -C)fi(z) if A(z)/Io() > c'
( - El)fO(x) if fX(W)O(z) < c'

where the constants c' and c" are chosen such that the functions are valid probability

densities (i.e. they integrate to 1). The Huber-Strassen densities have appeared fre-

quently as the solution to various minimax robustness problems. Lemma 13 is the basis

for many such applications.

Lemma 13. For i = 0,1, let Pi be the class of all probability density functions of the

form f = (1 - Ed)f + ejh, where f, is fixed and h is arbitrary, and let 'P be any convex

function. ff Po and pi are the Huber-Strassen least favorable densities corresponding to

fo and A, then the inequality

[() p o( )d < IT [ x fo(zT)d 1
holds for all marginal densities fo E Po and A E Pi .

Proof. It has been shown in [7] that the least favorable densities in terms of risk for

the classes PO and P are the Huber-Strassen densities. The proof then follows as a

corollary to Lemma I in 1151. 0

In addition to the i-contamination classes, the Huber-Strassen densities are also

least favorable in terms of risk for at least three other uncertainty classes: the total

variation classes [71, bounded classes [171, and p-point classes [18]. Thus Lemma 13

holds as well if the classes PO, P, are both of one of these other three classes.

The main result of this chapter is stated in the following theorem.
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Theorem 14. The least favorable process distributions F;, F' in the classes Qo, Q,

are such that their marginal densities are the Huber-Strassen densities (4.9) and their

bivaxiate joint distributions are defined by (4.5).

4.2 Robustness for S1

In the first section the idea of minimax robustness was discussed and the problem

(4.1) posed without reference to a particular performance measure. We are now ready

to find the solution to (4.1) with the performance measure S taken to be S1 as defined

in (2.6). Our first task is to show that for arbitrary but fixed marginal densities, the

bivariate disributions defined by (4.5) are in fact least favorable. For i = 0, 1, assume

that the marginal density fi is fixed and denote by IZ- the subset of Qi containing all

the distributions F which agree with the fixed marginal density. Let F,* denote any

such distribution in Ri having bivariate distributions defined by (4.5). To show that the

distributions F; and Fm are least favorable, we must show the inequalities (4.1). From

the result (4.6) and the fact that S1 is invariant under the scaling of g, it is clear that

the left inequality is an equality for any allowable nonlinearity g. From (4.4) it is clear

that the inequality

a(g) < (1 + 2R,)Var, g(X 1 ) (4.10)

always !.,ilds for any distributions in the uncertainty class Q1. But (4.6) implies that

under the distributions F; and F , equality is obtained in (4.10) for arbitrary g, and

in particular equality holds for g*. These facts imply that the right inequality in (4.1)

holds. Thus F0* and F* are the least favorable distributions in the classes R.0 and 7ZI.
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Now suppose we define a new performance measure S1 by

SI(g,fo,/) - [A(g;f 1 ) - (1g; fo)1)
a,(g; f)

where we introduce the new notation

A(g;f) = I g(z)f(x)dz

oa(g;f) =.g,(z)/(z)dz _ [-(g;

Such a performance measure depends only on the marginal densities. Suppose that we

find go, fJ, fl* which form a saddle point for $1, with f; and fl* being allowable marginal

densities for the classes Q0 and Q1. Thus

f;(s,f,fi') 5 91 (go,f;,fi) :5 S'(go, fo, fl). (4.12)

Ndw if'we consider the performance measure S1, and go, F , Fl*, where Fj" is a distri-

bution having marginal density fi* and bivariate distributions defined by (4.5), we find

that we have a saddle point for the classes Qo and Q1 . Indeed, we find that

Si (gIF0, F*) -- 1(g,ffi) 1 = S1(g,F;, F').(1-+-2RI) - (1 +2Rj)

Furthermore, we have

SI(g, F;,'F) = Sl(g+folA) <i(g+ ) = S 1(g*,.F ,F ) :S S(g*,Fo,FI)

where F[ denotes the proce-o distribution having fi as the marginal density and bivariate

distributions given by (4.5), and F denotes an arbitary process distribution which has

the marginal density f,. Our conclusion now is that we need only solve the problem

involving the performance measure 31 and the marginal densities; that is, we must find
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the-least favorable marginal densities f; and fi" which together with g* solve the problem

(4.12). Then the least favorable process distributions are such that they agree with the

marginal densities fo', fi' and have bivariate distributions given by (4.5).

Our method will be as follows: First we find the solution g*, fo, fj' to the minimax

problem (4.2), where fJ and f' are in the classes QZ and Q' which we define to be the

classes of all marginal densities which are derived from the classes Q0, Q1 . Recall that Q,

is an c-contamination class with nominal univariate density A and parameter ei. If the

problem (4.1) has a solution, then necessarily it must be g*, f;, f . Thus at this point

we have likely candidates for the robust nonlinearity and the least favorable densities.

The second step is to show that the right inequality in (4.1) is satisfied; that is, we must

show that

=(g*,fof;)- inf SI(g*,fo,fl). (4.13)Io,!i

F6r given marginals fo, fl, the optimal nonlinearity g is given by the solution of

the integral equation (2.19) with m = 0, and it is easily verified that a solution is given

by g(z) = -(fo(x)/f(z)]. By Theorem 3, we have that

S1 (g, fo, f)" g g(z)[f(z) - fo(-)Idx-" J °()I dx -1 (4.14)

Thus for the first step, solving (4.2), we must minimize the rightmost integral in (4.14).

Lemma 13 applies with I(z) = x - 1, which is convex. Thus our candidates for the

least favorable marginal densities are the Huber-Strassen densities corresponding to the

nominals 1o and I.

We must now show that the right inequality in (4.1) is satisfied by g = -(f /ff),

where fo and fi2 are the Huber-Strassen densities. A complete proof of this result has

been published in [16], and therefore only a sketch of the proof will be given here.
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Lemma 15, whose proof is given in [13], will be used here as well as in the next section

to show that certain functions are convex.

Lemma 15. Ifti >O, v2 >O,andOa < 1 then

(au + (1 )U2 2 <t +(2-4-(l-aAa)ls -a
+I V2

By virtue of Lemma 15, the performance measure Sj is convex in the densities

fo, f for fixed g. This implies that the function J(a;fo,fl) = $1 [g*,(1 - a)f; + a fo,

(1 - a)fl- + afl) is convex in a. Furthermore, a necessary and sufficient condition for

(4.13) to hold is that --LJ(a; fo, fl) > 0 for arbitrary fo, fl. However, it is a1o true

from considering (4.14) that fJ and fl* minimize the functional T[foJI] = f(fJ/f1).

Since T is also convex in fo, fl, we must have also the condition that -4T[(1 - a)f; +

afo,(1 - a)fj' + afi] 0=o _ 0. By considering these two derivatives, it can be shown

that the coiddition that fJ, f* minimize T is equivalent to the condition that they

minimize Sl(g*, fo, fl). A similar proof is given in greater detail in the next section for

the performance measure S3.

4.3 Robustness for S3

We will obtain in this section essentially the same result for the performance

measure S 3 as that obtained in the preceding section for the performance measure S1.

The first task is to show that the problem of finding the least favorable distributions again

reduces to a problem involving only the marginal densities. Define a new performance

measure

[h (g; f) - ,(g; fo)]2
S3(g, fo, f,) - o.2(g;.fo) + Ao"(g;fi)' (4.15)
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where A = ((1 + 2RI)/(1 + 2Ro)]. Such a performance measure depends only on the

marginal distributions fo, fl. If F, F, are process distributions which have marginal

distributions fo, f, and bivariate distributions defined by (4.5), then we have the relation

S3(g, Fo, F)= S3(g, A,.h
(1 + 2.Ro)"

A series of equalities and inequalities similar to those at the beginning of Section 4.2

can be used to show that the problem (4.1) for the performance measure S3 reduces

to the problem involving only the performance measure S3 . Thus if one finds the least

favorable marginal distributions fo, fl* and the minimax robust nonlinearity g9 for the

performance measure 53, then the minimax problem for S3 is solved by taking the least

favorable process distributions to be such that the marginal distributions are fo, f and

the bivariate distributions are given by (4.5).

The integral equation which yields the optimal nonlinearity for 53 is similar to

(3.27) with m = 0 except for the coefficient A:

g(X) fi(z) - fo(z) I fo()fo() + Af(-)f(y) 1 g(y)dy. (4.16)
fo(z) + Af1 (x) + L fo(z) + Af 1 (x)

We have immediately the form of the solution

g(-) = Bofo(z) + Bf,(x) (4.17)

fo(z) + Afi(z)

where BO = 0to - 1 and BI = Al, + 1. If we consider the linear system of equations

= Bo + 1 = J9(x)fo(x)dx

JI = I(BI - 1) = g(x)f(x)dx

with B0 , B1 as the unknowns, then we find that the system is singular, and consequently

we may assign to B0 the arbtrary value 0. This implies that

B1  J fo()fi()d] (4.18)BI V fo(z) + Afi(x) J (4.18)
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If g is the optimal nonlinearity which is matched to fo, fl, then we know that

S3(g, fo,fl) = J 9(Z)[f(Z) - fo(z)]dz

(4.19)

SB(fo,[f(z) - fo(x)] dx.
- fo(z) + Af7(z)

where we have written B1 as a function of fo and f to remind us of the relation (4.18).

Lemma 13 applies to the integral in (4.19) with T(z) = z(x - 1)/(z+ 1), which is convex,

so that the integral in (4.19) is minimized by the Huber-Strassen densities. Lemma 13

also applies to the integral in (4.18). In this case VP(z) = x/(Az + 1), which is concave, so

that by applying the lemma to the negative of the integral (since -T is convex) we find

that this integral is maximized by the Huber-Strassen densities. B, (fo, fl) therefore

is minimized. Thus our candidates for the least favorable marginal densities are the

Huber-Strassen densities. The right inequality in (4.1) will now be proved.

The following inequalities, which depend on the fact that a 2(g; f) is concave in

f and on Lemr a 15, dmonstrate that S3 (g, fo, f) is convex in fo and f, for fixed g.

With 0 = (1 - a) we have

S3(g,94o + fo,jOi + fo) W(g;Oil +- f) - A(g;f + crfo)]

a2(g;#3fo + ako) + Aa 2 (g;/3f1 + afi)

[0 /('0(g; I1)-_ (g;)} l(gf -pgo)]

0 /[o.2(g;0)+ Aa2(g;fj)] + a[a2(g;fo)+ AO2(g;fl)]

0 _3S(g, !o, fi ) + CSa(g, fo, f)

Define the function

J(a;fo,fl)=S33[9,(1-a)fo +afo,(1-a)ft +al O<a<1

where f; and f" are the Huber-Strassen least favorable densities and g* is the optimal

nonlinearity matched to f;, ft'. Certainly J is convex in a if S3 is convex in fo and fl.
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Now the right inequality in (4.1) holds if and only if

J(a; fo, f) J(O; fo, f) (4.20)

for all a in the interval [0,1], and since J is convex in a, (4.20) holds if and only if we

have the condition

dTJ(a; fo, fl )j'= -: O. (4.21)

If we take the derivative of J(a; fo,fl) and set a = 0. Then we have

T"J(a;f If)I,=o 2Jg°(fi- fo - f- + f;) /J(g)2(fo + Af) +J(g)I(f + Aff)

+ 2'*(fo - f) + 2Jg*(fi - MI

--2B[Jg'fI - f/g1 + f(g*)(f; + Afl) -f(9 *)2(fo +Af 1 ).

(4.22)

We can now show that (4.21) holds by considering the function

Tfo, /)2 d: (4.23)
J fo(z) + Af 1 (z)

which by Lemma 13 is minimized by the Huber-Strassen densities. Define

K(a; fo,f)= T[(1 - a)f + fo,(1 - a)f* + afi}.

It follows from Lemma 15 that T is convex in fo, f, . By the same reasoning as before,

then, we conclude that fo, fl* minimize T if and only if

d
-K(a; f0,f) > 0. (4.24)
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The final step in our proof is to show that the inequality (4.24) implies the in-

equality (4.21). Define p(,) = (1 - a)fi +afi for i = 0,1 and 0 < a < 1, so that we

have

K (p(l))2 (4.25)
K Ao, J pA)) + A(4,25

and thus

-K(; fo, fl)I li -rn a ~i) ~l)
<,, J c <,A? + A(.,'> p<o + Apo

The derivative of the integrand in (4.25) is

da [J*3 j (p. 2O 2f+f(1 f) I )
d fo= 2 f f,- fl) + f 2 [(f; + Afn-(fo+ Afl)].

To differentiate K we must justify the interchanging of the integration and differentiation

operations. The convexity of K as a function of a implies the inequalities

2 A) + )2 [(f + Afl) (fo.+2Afl)]

-o + Lf,: +f<,,' +,<° A Afl-

The right quantity in (4.26) is integrable, and the middle quantity converges pointwise

monotonically to the left quantity as (2 is 0 because of the convexity of r. The mono-

tone convergence theorem then permits the interchange of the differentiation and the

integ. tion, and we have

dK(a; fo, fl)10= =

2f Af(fl - f1) + f( A [(fo + Aft) - (fo + Af})] • (4.27)
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Now if we compare equations (4.22) and (4.27), then we see that (compare (4.17))

d .f' = d K f f

-J -af~IIfO da 1~~J,1 1 0

and thus conditions (4.21) and (4.24) are equivalent.
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CHAPTER 5

NUMERICAL RESULTS AND CONCLUSION

5.1 Description of the Examples

In the work of the preceding chapters, we attempted to justify the use of the vari-

ous performance measures by showing that a large value of a performance measure results

good performance as determined by the actual error probabilities. Such an approach is

necessary since the performance measures are mathematically tractable, whereas the er-

ror probabilities themselves are not. The error probabilities, however, can be estimated

by simulation on a digital computer. Such simulation results, presented in this chapter

for several different examples, will complete this work.

There are two questions concerning which we might like to gain some insight as a

result of these computer simulations. First, and perhaps foremost, is the question about

the validity of the assumptions which were made in justifying the various performance

measures. In particular, we assumed that "'e distribution of the test statistic was ap-

proximately Gaussian, and in fact, under the hypotheses of Theorem 1 or Theorem 12

the distribution of the normalized test statistic converges to a Gaussian distribution as

the sample size approaches infinity. Our tests shall have finite sample sizes, however,
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and therefore the effect of the finite sample size should be examined. The second ques-

tion which warrants our attention is of a philosophical nature. The processes between

which we wish to discriminate are dependent, and thus they necessarily involve memory.

However, the tests with which we wish to perform such discrimination are memoryless,

and therefore it is not clear to the intuition that such a scheme can work effectively. In

the case of mixing processes, where there is "asymptotic independence," we know that

memoryless discrimination is possible, and that the performance will improve as the

sample size increases. Our concern here should be the improvement of a given memo-

ryless discriminator over the discriminator which is designed under the assumption that

the processes are iid (i.e. the LRT (1.2)).

In all of the examples which are presented here, the marginal densities will be

the same throughout, and the varying parameters will be the time constants of the

'dependency lengths and the sample sizes of the tests. We assume that the process

has a Rayleigh distribution with parameter 0 = 4 under hypothesis H0 and a lognormal

distribution with parameters A = 0.8, A2 = 0.25 under hypothesis H1 . The Rayleigh and

lognormal densities are given in Appendices A and B, respectively. These distributions

are have found application in radar discrimination problems, and indeeQ such has been

the motivation behind this research. The n-dimensional Rayleigh density is such that it

generally lacks a closed form expression when n > 2, and thus an LRT is not feasible.

The parameters pj which appear in the expressions for both the Rayleigh bivariate

densities (A2) and the lognormal bivariate densities (B4) are %ctually the correlation

coefficients of the underlying Gaussian process(es). In each of the examples of this

chapter, we shall assume that the values of the pj parameters are given by exponentially

decaying sequences which are determined by a time constant "i. Thus under hypothesis



Hi, we have pi = exp(-j/ri), where pj is the parameter in the density fi. The time

constants will be varied in the different examples to reveal the effects of varying degrees

of dependency on the various test statistics.

Several comments concerning the choices for the aforementioned parameters are in

order. First, the parameters for the marginal densities were chosen to match as closely as

possible the two densities involved. More precisely, the parameters are such that E0 X, =

E 1 X, and E0 X X2 = E1 X?; that is, the first and second moments agree. The graphs

of the two marginal densities can be observed in Figures 1 and 2. While observing the

linear plots in Figure 1, it seems that this is a relatively difficult discrimination problem;

however, logarithmic plots in Figure 2 reveal that there is a great deal of discrimination

capability in the tail regions, the Rayleigh density fo having a much heavier tail to the

left and the lognormal density f, having a heavier tail to the right. Second, by taking

the sequences of ,o-parameters to be exponential. sequenc'es, the underlying Gaussian

processes become Markov processes, and thus methods for generating the processes on

a computer become relatively simple.

As mentioned above, the parameters for the marginal densities shall remain the

same for each of the specific examples considered. The time constants, however, will be

varied in the different examples. We shall assign a label E, to each of the examples for

easy reference. Table 1 lists the parameters for each of the examples.

5.2 The Calculation of the Nonlinearities

For each of the examples El,..., E5 , we shall compare the performance of five

different nonlinearities gi,i = 0,... ,4. We denote by gi, for 0 < i < 3, the optimal
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Table 1. Parameters for the examples.

Example TO Ti Mn rt n

El 13.0288 13.0288 60 60 1000

E- 13.0288 130.288 60 600 1000

E3 130.288 13.0288 600 60 1000

E4 130.288 130.288 600 600 1000

Es 13.0288 130.288 60 600 100

nonlinearity for the performance measure Si, which is consistent with our usage in the

preceding chapters. We also denote by g4 the optimal iid nonlinearity given by 4 =

log(fi/fo) (cf. (1.2)). Thus we have also five different test statistics Tj = E=l gi(Xk),

i = 0,..., 4. The nonlinearity g4 is computed easily since it has a closed form solution.

To obtain the others, the corresponding integral equations from Chapters 2 and 3 must

be solved.

Several issues must be considered in the numerical calculation of the nonlinearities.

First, because the integral equations are derived for m-dependent processes, we must

assign a value to m. Our criterion for doing so is to select m so that pm !__ Pmin. Thus

we have two values m0 , n, corresponding to the processes under the two hypotheses H0 ,

H1 . In the results presented here, we have Pmi. = 0.01. These results were tested by

decreasing the value of Pmis, or equivalently, increasing the value of mi and it was found

that the numerical results were unchanged, thus corroborating Theorems 6 and 11. The

second issue is the choice of a finite interval [Xmin, Xmax over which the integration is to

be performed. This amounts to truncating the densities, and is of a special concern for
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the nonlinearities go and g, since fo(z)/fi(z) is unbounded as x - oc and fi(x)fo(x)

is unbounded as x --+ 0. Thus for these cases the absolute term in the integral equation

does not have a finite second moment, and it is therefore manditory that the tails of

the densities be modified or truncated for the problem to be well defined as a Fredholm

equation. In other words, the condition (a) at the beginning of Section 2.3 is not satisfied

unless the tails of the densities are modified by truncation or some other method. For

the problems here, the interval [Zmin, zmI was chosen so that under either hypothesis

P{X, < Zmi.} < e and P{Xj > Zm.} < c, where e = 5 x i0 - 5. This resulted in

zmin = 0.02 and z... = 15.7.

The most direct method for solving a Fredholm equation is to approximate the

integral with a numerical quadrature formula, and thereby transform the problem into

a system of linear equations. In the method used here the quadrature formula was a

composite Simpson's rule with N = 301 nodes. The argument goes as follows. First

approximate the integral by the weighted sum thus:

g(z) f(z) - fo(z) +z)g(). (5.1)
fi(z) W(.

We find our numerical solution by solving the N linear equations

Af (Xj) -- fo (Xj) IV

Sf= (z ) + K(zj,zi)uiwi j= 1,...,N (5.2)

for the N unknowns ui, i = 1 ... ,N. If the numerical integration in (5.1) is reasonably

a--urate for all the z values in the interval [Xmin, Xmaxl, then g(xi) will solve a linear

system of equations similar to those in (5.2) but with slightly perturbed coefficients.

Therefore, provided the coefficient matrix is not ill-conditioned, the solution of (5.2)

will give a reasonably approximate solution to the integral equation. In fact. Fredholm
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actually proved that the such approximations converge to the solution as N approaches

infinity. Obtaining a numerical solution for the integral equation (3.15) requires a little

more effort, in that one must solve the linear equations for several different values of

r until the sequence of r valaes appears to be near its 'mit. In the problems solved

here, the initial value was r = 1 and convergence to within 10- occurred after 10-23

iterations for the four examples. For any of the integral equations, if the values of m0

and m, are large, then typically the vast portion of CPU time is spent in initializing

the matrix for the linear system because of the sums in the kernels. For the integral

equation (3.15), where the linear system must be solved several times, it is economical

to save the values of the sums.

Shown in Figures 3-6 are the graphs of the numerically computed nonlinearities

for the problem E2 . Figure 3 displays the nonlinearities go and g4, while Figure 4, which

is drawn to a much smaller scale than Figure 3, displays the nonlinearities g, g2, and

g3. Figures 5 and 6 are semilogarithmic plots which show the right aad left tails of

the nonlinearities. The tail behavior is of concern because, as we noted by observing

Figure 2, this is where most of the discrimination capability lies. We might try to predict

the performance of each of the test statistics by observing the shapes of the corresponding

nonlinearities. For go, the heavy tail to the right will cause a separation of the means

Ao(go) and Pl(g0) at the expense of making a,(g0) rather large. Of course, 0' (g0) will

not be effected in a serious way by the right tail because, as can be seen in Figure 2, fo

places little mass in *',at region. We notice the reverse situation for 91, where the heavy

tail on the left should create a separation of Mo(9i) and p1(gi) at the expense of making

aj(gi) large. Because g4 has heavy tails on both the left and the right, we would expect

p1(g4) -po(94) to be large, as well as 016(94) and al (94). Finally, we note that 92 and g3
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Figure 3. Linear graphs of the nonlinearities go and g, for Exam-

ple E2 .
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Figure 4. Linear graphs of the nonlinearities gl, g, and g3 for Ex-

ample E 2 .
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Table 2. Values of /i and o'i evaluated at the each of the nonlinearities for

Example E2 .

/o*0 01 0I

go -2.9643e-01 3.1015e+01 9.6166e+02 9.3037e+05

g1 -1.2197e+09 1.3087e+11 9.1490e-06 3.4924e+04

92 -4.9429e-03 5.3269e-02 5.6676e-07 1.7041e-02

93 -8.7036e-03 7.995le-02 1.7709e-06 4.8095e-02

g4 -1.6660e-01 1.4059e+00 8.0028e-02 5.7433e+00

do not have heavy tails to either the left or right, and thus we expect 14 -Ao to be small as

well as a 2 and o'2 for each case. Table 2, which lists the values of these moments for each

of the nonlinearities for example E2 , shows that such predictions are accurate. One final

comment concerning the shapes of the nonlinearities is worth mentioning. Because of the

lopsided nature of the nonlinearities go and g, the distributions of go(X 1 ) and gl(X)

will be skewed to the right and left, respectively. Thus convergence of the sums To and

T1 to a Gaussian distribution will be slow. On the other hand, because the nonlinearities

g2 and g3 are relatively small in magnitude and "balanced," the convergence of T2 and

T3 to a Gaussian should be more rapid. The heavy tails on both the left and right of 94

should cause g4 (X 1) to be skewed to the left under H0 and skewed to the right under

H1 . Thus convergence of T4 to a Gaussian distribution should also be rather slow. The

same general phenomena occur for the other examples as well.

In Tables 3-6 are listed the values of the performance measures evaluated at each

of the nonlinearities. We observe for each case that the numerical solutions are consistent

with the goal that gi maximize Si for i = 0, 1,2,3.
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Table 3. Values of the performance measures evaluated at each of the nonlin-

earities for Example El.

so S, S2  S3

90 9.6196e+02 1 .0008e-05 1 .0006e-05 1 .0008e-05

91 8.6869e-05 7.0651e+10 8.6869e-05 8.6869e-05

92 2.2580e-02 9.3601e-02 1.0155e-02 1.8191e-O2

93 3.0055e-02 5.4255e-02 9.8783e-03 1.9341e-02

g3 3.0775e-02 2.4026e-02 6.7720e-03 1 .3493e-02

Table 4. Values of the performance measures evaluated at each of the nonlin-

earities for Examples E2 and E5.

so S, S2  53

90 9.6196e+02 1.0690e-06 1.0690e-06 1.0690e-06

91 8.6869e-05 1.2197e+09 8.6869e-05 8.6869e-05

92 8.612le-03 8.4155e-02 4.9434e-03 7.8126e-03

93 1.1856e-02 3.2 762e-02 4.6221e-03 8. '054e-03

94 3.0775e-02 1.8440e-03 1.1901e-03 1. 7397e-03
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Table 5. Values of the performance measures evaluated at each of the nonlin-

earities for Example E3 .

soSi S2 S3

g0 l.74l7e+02 4.9968e-06 4.9951e-06 4.9968e-06

91 8.266le-05 7.0651e+10 8.266le-05 8.2661e-03

92 5.5079e-03 2.8253e-02 2.6506e-03 4.6093e-03

93 6.5927e-03 1 .8214e-02 2.5700e-03 4.8406e-03

93 4.4120e-03 2.4026e-02 2.1620e-03 3.7275e-03

Table 8. Values of the performance measures evaluated at each of the nonhin-

earities for Example E4 .

so Si S2 S3

go 1.7417e+02 8.9601e-07 8.9588e-07 8.960le-07

91 8.266le-05 1.2197e+g 8.2661e-05 8.2661e-05

92 1.8637e-03 6.0845e-02 1.349ge-03 1.8083e-03

93 3.0956e-03 8.4433e-03 1 .2010e-03 2.265 le-03

93 4.4120e-03 1.8440e-03 6.802le-04 1.3005e-03



5.3 Simulation Results

Figures 7-11 contain the graphs of the receiver operating characteristic curves

for each of the examples. These were generated by tabulating tnt .o,,l,, i L0,OOO

simulations under each hypothesis. Since the values of the nonlinearities were computed

for only those values in the interval [zmui, z.], a method had to be chosen to deal with

those observations outside the interval, and this was resolved by limiting the observations,

so that a value outside the interval was reset to Xmin or Zmax, whichever was the closest.

The reasoning behind such a method is that real world observations are in fact limited

since the instruments which make the measurements are limited. The endpoints xMin

and z.. were selected so that the probability of an observation being larger than XmAx,

for example, would be less than 5 x 10- , and the actual proportion of observations

which occured beyond zm or below zmla in the simulations proved to be consistent

with this probability. Thus the effect of this limiting is practically negligible.

The ROCs in Figures 7-11 are plots of the error probability P versus the error

probability P on logarithmic scales. Our main concern shall be the minimax point of

the ROC, or that point where P0 = P1 . This region occurs along the diagonal which

extends from the lower left corner to the upper right corner of the graph and gives us an

ordering of the nonlinearities. The approximate values of P (and hence also P0 ) at the

mnimax point are listed in Table 7. From Figure 7, which corresponds to the example

El, we see that the lid nonlinearity g4 performs uniformly better than the others, which

is to be expected because the dependency under either hypothesis is relatively weak.

The ordering, from best to worst, continues with g3, g, g1, and finally go.

Figure 8 corresponds to E2, were there is a relatively strong dependency under

72



Table 7. Approximate values of P0 (and P1) at the minimax region of the

ROCs for each of the nonlinearities as estimated through computer simulation.

Example go g1 92 93 94

El 4.1e-03 2.2e-03 1.le-03 9.0e-04 7.0e-04

E2 1.le-01 2.6e-03 4.3e-03 6.5e-03 3.5e-02

E5  4.0e-02 2.8e-02 2.4e-02 2.8e-02 2.3e-02

E 4  1.8e-01 4.9e-02 4.4e-02 6.9e-02 9.8e-02

E 3.7e-01 1.6e-01 1.7e-01 2.4e-01 1.7e-01

the hypothesis HI. The ordering is 91, 92, g3, g4, and go, a result which is rather pleasing

to the intuition. Since there is memory in the observations, the nonlinearity 94 which is

designed under a no memory assumption performs relatively poorly. The nonlinearity gj,

however, was designed to minimize a,, which essentially captures all of the dependency

under H1 . Thus g achieves its relatively good performance by minimizing the effects of

the dependency, and this may perhaps be the only way to handle dependency when a

memoryless discriminator is to be used.

With this concept in mind, we now examine Figure 9, corresponding to E3 in

which the dependency under Ho is relatively strong. Although we would expect a reverse

of the situation of E2, we find again that the ordering at the minimax point is g4, g2,

93, g1, go, which is like that of El except that the positions of 92 and g3 are reversed.

There is not a larly difference in the performance from best to worst, and in fact g, and

g3 are actually tied for the third position. As we proceed to the left of the curves from

the minimax region, we find that there is a region where g, performs best, and finally a

region where go performs best. If we examine the situation a little more carefully, we may
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also have an intuitively pleasing explanation for this result. The correlation with which

we are actually dealing is that of the underlying Gaussian process(es). The p-parameters

in the bivariate densities in the appendices are the actual correlation coefficients of the

Gaussian processes, but are related to the correlation coefficients of the Rayleigh and

lognormal processes in a one-to-one manner. Denote by pR(p) the correlation coefficient

of the Rayleigh density as a function of the parameter p from the bivariate density Let

pf(p) denote this function for the lognormal density. Then pe has the explicit form

i =e p 2 - 1

Pt(P)= _ 1

eX3 -1

and we note that derivative of pe at 0 is positive. In fact, for A2 = 0.25 the derivative at 0

has the approximate value 0.88. Although there is no closed form expression for PR, one

can show that the derivative at 0 is 0. The implication from this is that the correlation

of the Rayleigh density for a given value of the parameter p is much less than that of

the lognormal density. This makes intuitive sense since the Rayleigh process involves the

sum of two Gaussian processes, whereas the lognormal process involves only one. Thus

for E3 , there is an increase in the dependency under H0 compared to that for El, but

this increase is perhaps not so significant that go would perform better than g4, as we

might expect. What we observe, however, is a degradation of the results for E, due to

the increase in the dependency under H0 .

We have the ROCs corresponding to E4 in Figure 10, where a nearly uniform

ordering is g1, g2, g3, g4 , go. This or.-ering is precisely that of E2 , although there is not

as large a difference in performance here. This is the situation in which the dependency

under both hypotheses has been increased from El. From the discussion of the preceding

paragraph, we know that the dependency under Hi is stronger than that under H0 . Thus
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Figure 11. ROCs for Example ES.

our discussion concerning the results from E2 apply here, and we may interpret this as

a case in which the performance from E2 is degraded due to the increased dependency

under H0 .

In Figure 11 we observe the results for Es, where we hope to discern the change

in the performance from E2 by taking a smaller sample size. We find here that the

performance of each nonlinearity has declined, as is to be expected. In the minimax

region the ordering in essentially the same as that in E2, although there is a small region

where g2 performs best. Clearly, though, the performance of g1 , g2, and g3 are practically

the same.
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5.4 Conclusion

In conclusion, we may wish to consider again the questions which were posed in the

beginning of this chapter. First, regarding the validity of the performance measures, the

simulation results and the values of the performance measures do not necessarily correlate

well. In other words, knowing the values of a particular performance measure for two

given nonlinearities, we may not be able to predict which nonlinearity will perform better

in the simulations. Indeed, the nonlinearity g4 does not maximize any of the performance

measures Si yet it has shown the best performance in the example El. This does not

mean that the performance measures are not useful. On the contrary, they provide us

with a method for calculating other nonlinearities which, as evidenced here, might prove

to perform better than the iid nonlinearity. Nor does this mean that the theory is flawed,

since the tests used here required finite sample sizes, ar aspect which was neglected in

the theory. One consequence of the finite sample size is that the distributions of the test

statistics are not truly Gaussian. In fact, the distributions of the test statistics To and

T, are strongly skewed. Although this might be undesirable from the standpoint of the

theory alone, this phenomenon is not necessarily undesirable in practice. Consider the

test statistic TI, for example. The variance of Ti under the hypothesis H0 is extremely

large compared to the variance under H, and the compared to the difference between

the means under the two hypotheses. However, because the distribution of T, is skewed

to the left, most of the outliers under H0 fall away from the threshold, and this results

in a generally good performance.

Second, concerning the performance of memoryless discriminators for dependent

processes, is has been demonstrated that in a situation of weak dependency, the iid
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discriminator can be difficult to improve upon, while for a situation of strong dependency,

the methods derived here show definite improvement over the iid discriminator. We might

now conjecture as to how such an improvement might come about. If the dependency is

strong under one of the hypotheses, say H1 , then the result of maximizing 51 will likely

* lead to an improvement. This is because maximizing S1 will result in a small value of

o2, the effect of which is to minimize the much stronger dependency condition under H1 .

This conjecture seems to be corroborated by the simulation results from E2, E4, and

Es where the dependency under H1 is stronger than that under H0 . If, however, there

is strong dependency under both of the hypotheses, then perhaps the best approach

would be to maximize 5 2 or S3, since in this way both of the dependency conditions

are minimized. The relevant example here is E4, where g, still performs best. However,

as we noted above, the dependency is still somewhat stronger under H, than under

Ho. The basic premise of the method described here is that when using memoryless

discriminators for dependent processes, the best one can do to deal with the dependency

conditions is to minimize their effects. The performance measures Si provide framework

for doing so.

It is satisfying to observe in the simulation results that g2 and 93 perform com-

parably, though g2 generally performs slightly better. This is important because the

calculation of g3 is much easier than the calculation of g2. Considering the good overall

performance of the nonlinearity g3, especially when there is strong dependency under

both hypotheses, and the relatively simple calculation needed to determine it, this non-

linearity might be preferred in most situations.

The theory which has been presented here is entirely based on central limit theory

and the assumption of large sample sizes. Indeed, all of the performance measures derived
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here have been asymptotic performance measures. Admittedly, this approach might

seem to be too narrow in its application to be useful in situations where a relatively

moderate or small samle size is required. However, when faced with the problem of

discriminating between two possible sources for an observed random process in which

there is correlation in the observations, there is little else that one can do other than the

LRT. Therefore, the work here is significant in that it does present an alternative to the

LRT: the memoryless decision rule. In situations where the LRT cannot be implemented

and there is decorrelation of the observations with time, one might be tempted to assume

that the observations are iid, thereby leading to a memoryless discriminator. We have

seen here several alternative memoryless discriminators, some of which might improve

upon the lid discriminator. Furthermore, the simulation results have demonstrated that

good results can be obtained for even moderate sample sizes. One possible area for

future research might be to examine more thoroughly the performance for various sample

sizes, and we might also note that these memoryless discriminators are ideally suited for

sequential discrimination. We have also seen how some of the results can be made

robust. Robust discrimination is important in many applications where circumstances

might vary from test to test, such as a situation of radar discrimination of targets. Thus

these robustness results are also significant, and the application of these results to radar

problems might also be an area for future research.
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APPENDIX A

The Rayleigh Distribution

Let X = (X1 ,... ,X,) and Y = (Y,...,Y.) be independent and identically

distributed Gaussian random vectors such that E Xi = E Y = 0 and Var X = Var Y = 0i

for i = 1,...,n. Suppose also that EXiXjl/ /- = EYiYj/i0-/i = pij. Then the

random vector Z = (Z,,...,Z, ) defined by Zi = V/' +Yi has a Rayleigh distribution.

For n > 2, the n-dimensional density involves n - 1 iterated integrations and does not

have a closed form expression. The bivariate density for (Zi, Zj) is

fz, z,(uR) (l - 6  exp 2 (l - )[e+ I0 (1- pi.)6 J '

(u > 0,v > 0) (Al)

where 10 is the modified Bessel function of the first kind of order 0. If the vectors X and

Y are stationary, then Z is stationary and the density for (Z1 , Zj+1 ) can be written

z, z,(,v)= U ) xp U ) ( [ pJ

(u > 0,v > 0) (A2)

where 0 = 01 = 0j+l and Pj = P1,j+j. The marginal density takes the form

(u) exp (u >0). (A3)

The moments of the Rayleigh random variable Z are given by

E n=(28)nt/2r (2 + 1) (n = 1, 2,. .. (A4)

where r denotes the gamma function.
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APPENDIX B

The Lognormal Distribution

Let X = (X 1,...,X,,) be a Gaussian random vector with EX, = A(') and

VarX, = A0'. Suppose also that EXiXjI// ,7j = EYiYjIV = pij. Then the

random vector Z = (Z,,..., Z,,) defined by Zi = exp(Xi) has a lognormal distribution.

If Fx and Fz denote the n-dimensional distribution functions for the Gaussian random

variables and lognormal random variables, respectively, then we have the relation

Fz( zl ,. .. ,zn) = Fx (log zl , 10 .. ,lgzn). (B1)

We may therefore obtain a relation for the densities by differentiating, and this yields

1
M Z ( 1 , , , ) = fx (tog z , . • , log z ,) (B 2)

Zl ... Znt

The explicit expression for the bivariate density for (Zi, Zj) is

fzz(u,v) = [2ruv Ai))4(i 31-j)] X

pf 1 [(logu - A('))2 2p,,(og u - (')(logv - A ) )+ (log - A ))2
exP 2( p2. I ')(ij) + A~jA( Vr2 \2 2

(B3)

If the random vector X is stationary, then so is the vector Z, and the density for

(Z 1,Zj+ 1 ) can be written

P (u, V) = x
exp (lg- )2-2p(logu - A)(logv - A) + (Iogv - A )2  (B4)

exp~(a~u~)2A 2(1 _ p2)
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where A1 = A 1) = A('11) and pj = pij+1. The marginal density has the form

1 {( lo g - A1 )2
f (u) = u V/2 exp (l2 2A2 . BS

The moments of the lognormal random variable Z are given by

EZ = e2p[nA, + jn22] (n= 1,2,...). (B6)
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